Title: Analyticity properties of 2d Ising Field Theories

Speakers: Hao-Lan Xu

Series: Quantum Fields and Strings

Date: October 03, 2023 - 2:00 PM

URL: https://pirsa.org/23100073

Abstract: In this talk, I will discuss the analyticity properties of 2d Ising field theories (IFTs). I will start with a short introduction to 2d Ising field theory, which is the continuous limit of the 2d Ising model on square lattice. Then the different spectrum scenarios for high-T and low-T domains will be introduced. Generally speaking, an IFT which sits not at the critical temperature and has a non-vanishing external field is neither solvable nor integrable. However, it's possible to look into the analytical properties of various quantities in the theory space, then further non-perturbative information can be extracted. I will focus on the analyticity properties for mass of the first excitation, and discuss its critical behaviours and dispersion relations in both ordered and disordered phase. Finally, if time allowed, I will switch to the analyticity properties of the analytical structure of S-matrices, and show various related interesting phenomenons together with unsolved problems

References:

- [1], Ising field theory in a magnetic field: Analytic properties of the free energy, P. Fonseca and A. Zamolodchikov, hep-th/0112167 [hep-th].
- [2], Ising Spectroscopy II: Particles and poles at T > Tc, A. Zamolodchikov, 1310.4821 [hep-th].
- [3], 2D Ising Field Theory in a magnetic field: the Yang-Lee singularity, H. Xu and A. Zamolodchikov, 2203.11262 [hep-th].
- [4], On the S-matrix of Ising field theory in two dimensions, B. Gabai and X. Yin, 1905.00710 [hep-th]
- [5], Ising field theory in a magnetic field: phi^3 coupling at T > Tc, H. Xu and A. Zamolodchikov, 2304.07886 [hep-th]
- [6], Corner Transfer Matrix Approach to the Yang-Lee Singularity in the 2D Ising Model in a magnetic field, V.V.Mangazeev, B.Hagan and V.V.Bazhanov, 2308.15113 [hep-th]
- [7], Ising Field Theory in a Magnetic Field: Extended analyticity properties of M1, H. Xu, in preparation.

Zoom link: https://pitp.zoom.us/j/97062411964?pwd=TWFHU0I5UGw3eXZjZzRHUEFnbjlydz09

Pirsa: 23100073

Analyticity properties of 2d Ising Field Theories Hao-Lan Xu C.N. Yang Institute of Theoretical Physics, SUNY Stony Brook October 3, 2023 Hao-Lan Xu (YITP, Stony Brook) Analyticity properties of 2d Ising Field Theories October 3, 2023

Pirsa: 23100073 Page 2/40

Outline

- Basics on 2d Ising field theories (IFTs):
 Definition, state functions, symmetries and scenarios.
- Analyticity properties of scaling functions: Dispersion relations in high-T and low-T.
- Extended analyticity conjectures:
 Dispersion relations connecting both phases.
- Polology of Ising field theory: (optional)
 Evolution and analyticity properties of scattering.
- Summary and outlooks.
- Appendices.

Hao-Lan Xu (YITP, Stony Brook)

Analyticity properties of 2d Ising Field Theories

October 3, 2023

2/5

Pirsa: 23100073 Page 3/40

Basics

• Ising model: classical spins (up and down) sitting on lattices (square, triangle, etc.) with interaction between nearest sites (J > 0):

$$\mathcal{H} = -J \sum_{\langle i,j \rangle} \sigma_i \sigma_j + H \sum_i \sigma_i , \quad \mathcal{Z} = \sum_{\{\sigma_i\}} e^{-\beta \mathcal{H}} .$$

- Why Ising model? It describes important universality classes in nature:
 Vapor/liquid phase transition, ferromagnetic transition near Curie point, etc.
- Current understanding of Ising models: $d=4-\epsilon$: famous picture of Wilsionian RG with φ^4 . d=3: numerical solutions near criticality (perturbative RG, Monte-Carlo, numerical conformal bootstrap, etc).
- d=2: Onsager gave the solution at H=0 (Onsager 1944)¹. Yang and Lee established the theorem of circle and zeros (Yang & Lee 1952)². However, for generic J and H: no solution available in closed form. Also, when not at criticality: conformal symmetry or integrability broken.
- "How much can we understand 2d Ising" is still an interesting question.

¹Lars Onsager. "Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder Transition". In: *Phys. Rev.* 65 (3-4 1944), pp. 117–149. DOI: 10.1103/PhysRev. 65.117. URL: https://link.aps.org/doi/10.1103/PhysRev. 65.117.

²Chen-Ning Yang and Tsung-Dao Lee. "Statistical theory of equations of state and phase transitions. I. Theory of condensation". In: *Physical Review* 87.3 (1952), p. 404.

Hao-Lan Xu (YITP, Stony Brook)

Analyticity properties of 2d Ising Field Theories

October 3, 2023

3 / 56

Pirsa: 23100073

The Ising Field Theories

 In the continuous limit, Ising models at critical point ⇒ Ising conformal field theories (ICFTs). Non-critical Ising models ⇒ Ising field theories (IFTs):

$$\mathcal{A}_{\mathsf{IFT}} = \mathcal{A}_{\mathsf{CFT}}^{\mathsf{Ising}} + \tau \int \varepsilon(x) \, d^2x + h \int \sigma(x) \, d^2x \,,$$

as relevant deformations away from Ising CFT at UV.

- Continuous limit: lattice spacing $\rightarrow 0$, while spin-spin correlator normalized.
- $\varepsilon(x) \sim \sigma_i \sigma_{i+1}$: energy operator, while temperature perturbation $\tau = \frac{m}{2\pi} \propto 1 \frac{T}{T_c}$;
- $\sigma(x) \sim \sigma_i$: spin operator, while external magnetic field $h \propto H$.
- From abstract CFT point of view, Ising CFT is defined as a conformal field theory with \mathbb{Z}_2 symmetry, which has only 2 local relevant scalar operators ($\Delta < d$).
- We would call the \mathbb{Z}_2 even operator $\varepsilon(x)$, and the \mathbb{Z}_2 odd operator $\sigma(x)$. Their conformal dimensions Δ_{σ} and Δ_{ε} would determine the critical scaling laws.

Hao-Lan Xu (YITP, Stony Brook)

Analyticity properties of 2d Ising Field Theories

October 3, 2023

2d Ising CFT as minimal model (3,4)

- In 2d, exist a set of solvable diagonal CFTs: minimal models, which are labelled by co-prime integers (p,q). The minimal model (3,4) describes 2d Ising CFT.
- In ICFT, $c_{\text{Ising}} = \frac{1}{2}$. The conformal dimensions are $(h_{\varepsilon}, \overline{h}_{\varepsilon}) = (\frac{1}{2}, \frac{1}{2})$ and $(h_{\sigma}, \overline{h}_{\sigma}) = (\frac{1}{16}, \frac{1}{16})$, with [m] = 1 and $[h] = \frac{15}{8}$.
- Dimensionless combinations: scaling parameters, which label the RG flows.

$$\xi = \frac{h}{|m|^{15/8}}, \quad \text{and} \quad \eta = \frac{m}{h^{8/15}},$$

they are related by $\xi = \eta^{-\frac{15}{8}}$ or $\eta = \xi^{-\frac{8}{15}}$ (up to signs), and both live in \mathbb{C} .

• With vanishing h, action of IFT is equivalent to the one of 2d Majorana fermions:

$$\mathcal{A}_{\mathrm{FF}} = \frac{1}{2\pi} \int \left(\psi \bar{\partial} \psi + \bar{\psi} \partial \bar{\psi} + i m \bar{\psi} \psi \right) d^2 x = \mathcal{A}_{\mathrm{CFT}}^{\mathrm{Ising}} + \frac{m}{2\pi} \int \varepsilon(x) \, d^2 x \, .$$

|m| now is the fermion mass. Their Hilbert spaces are different by projection.

• Scenario of IFT and scenario of FF are different, in IFT $\varepsilon(x)$ and $\sigma(x)$ are local operators, while $\psi(x)$ and $\bar{\psi}(x)$ are mutually semi-local with respect to $\sigma(x)$.

Hao-Lan Xu (YITP, Stony Brook)

Analyticity properties of 2d Ising Field Theories

October 3, 2023

State functions and scaling functions

- State functions of 2d IFTs (of continuous limit): depend on (m, h).
- Examples: free energy density F(m,h), the first mass gap $M_1(m,h)$ (inverse correlation length), poles of $S(\theta)$ and their residues, etc.
- Many of them are available using numerical methods (truncated method, etc.). For example, F and M_n are from slope and gaps of finite size spectrum $E_n(R)$.

- Scaling functions: dimensionless functions depend on ξ or η , describe the flow.
- i.e.: $\mathcal{G}(\xi) = \frac{1}{|m|^2} F(m,h) \frac{\eta^2}{8\pi} \log \eta^2$ and $\hat{M}_1(\xi) = \frac{1}{|m|} M_1(m,h)$.

Hao-Lan Xu (YITP, Stony Brook)

Analyticity properties of 2d Ising Field Theories

October 3, 2023

Phases and Scenarios: $T > T_c$

- At $T > T_c$: disordered phase and unbroken \mathbb{Z}_2 symmetry: $h \leftrightarrow -h$. The scaling functions are even in ξ and would depend on $\xi^2 \sim h^2$.
- Yang-Lee theorem: the lattice partition function \mathcal{Z} has zeros distributed on the unit circle of fugacity $\mu=e^{-2\beta H}$ plane. The circle becomes an arc in high-T phase.
- In the continuous limit, the zeros of \mathcal{Z} condensed into a branch cut of $F = -\log \mathcal{Z}$, known as Yang-Lee (YL) branch cut. The edges become YL edge singularities.
- Properties of YL branch cut and singularity will be discussed later.

Hao-Lan Xu (YITP, Stony Brook)

Analyticity properties of 2d Ising Field Theories

October 3, 2023

Phases and Scenarios: $T < T_c$

- At $T < T_c$: ordered phase with broken \mathbb{Z}_2 symmetry. VEV of spin density: $\langle \sigma \rangle = \pm \bar{\sigma} = \pm \bar{s} |m|^{1/8}$, with $\bar{s} = 1.35783834...$
- Double degenerate vacuum at h = 0, degeneracy lifted at $h \neq 0$. At small h: stable vacuum (spins aline along h) and metastable vacuum.
- In 1+1 d as a field theory: meson spectrum (McCoy-Wu scenario), fermions as domain walls and h provides binding force. String tension $f=2\bar{\sigma}h$.

• Along negative ξ -axis: Fisher-Langer's branch cut of scaling functions.

Pirsa: 23100073

Phases and Scenarios: $T < T_c$ and Fisher-Langer's branch cut

- At $T < T_c$: Yang-Lee theorem gives the full circle. The zeros of lattice partition function sit on the unit circle in the fugacity plane.
- $|\mu| < 1$ domain and $|\mu| > 1$ domain correspond to different choice of VEV. i.e.: $|\mu| > 1$ is the one with $\langle \sigma \rangle = +\bar{\sigma}$ and $|\mu| < 1$ is with $\langle \sigma \rangle = -\bar{\sigma}$.
- In the continuous limit, zeros of $\mathcal Z$ would condense into a natural bound of analyticity for thermodynamic functions. On the complex ξ -plane, the "wall" is the imaginary axis separating $\Re e\,\xi>0$ and $\Re e\,\xi<0$, and in each domain different functions $M_1\,,F\,,\cdots$ can be defined. They are sitting in different phase.
- However, for functions defined from $\Re e\,\xi > 0$ it's possible to do analytically continuation till the full complex ξ -plane, and would leave a discontinuity along the real negative axis: the Fisher-Langer's branch cut.

Pirsa: 23100073 Page 10/40

Phases and Scenarios: $T < T_c$ and Fisher-Langer's branch cut

- At $T < T_c$: Yang-Lee theorem gives the full circle. The zeros of lattice partition function sit on the unit circle in the fugacity plane.
- $|\mu| < 1$ domain and $|\mu| > 1$ domain correspond to different choice of VEV. i.e.: $|\mu| > 1$ is the one with $\langle \sigma \rangle = +\bar{\sigma}$ and $|\mu| < 1$ is with $\langle \sigma \rangle = -\bar{\sigma}$.
- In the continuous limit, zeros of $\mathcal Z$ would condense into a natural bound of analyticity for thermodynamic functions. On the complex ξ -plane, the "wall" is the imaginary axis separating $\Re e\,\xi>0$ and $\Re e\,\xi<0$, and in each domain different functions $M_1\,,F\,,\cdots$ can be defined. They are sitting in different phase.
- However, for functions defined from $\Re e\,\xi > 0$ it's possible to do analytically continuation till the full complex ξ -plane, and would leave a discontinuity along the real negative axis: the Fisher-Langer's branch cut.

Hao-Lan Xu (YITP, Stony Brook)

Analyticity properties of 2d Ising Field Theories

October 3, 2023

Special points

When ξ or η takes some special values, one finds the IFTs become integrable or solvable (on the full trajectory or in some limit). The special points are:

- h=0, correspond to the Onsager's solution of free fermions, |m| would be the mass of fermions, with free energy $F(m,0)=\frac{m^2}{8\pi}\log m^2$ (in unit of J).
- m=0 with nonvanishing h, which becomes the integrable E_8 field theory³.
- When m < 0 and take h to be a pure imaginary. The Yang-Lee critical point is located at $\xi = \pm i \xi_0$, with $\xi_0^2 \approx 0.035846(4)$. Near which: infrared integrable".

Now focus on the Yang-Lee critical point ("edge" of condensing zeros):

• IR fixed point: non-unitary minimal model (2,5), with $c_{YL} = -\frac{22}{5}^4$. Its relevant deformation:

$$\mathcal{A}_{\text{SYLM}} = \mathcal{A}_{\text{CFT}}^{\text{YL}} + \lambda \int \phi(x) \, d^2x \,,$$

is called the scaling Yang-Lee model (SYLM), which is massive and integrable $\phi(x)$ with scaling dimension $(-\frac{1}{5},-\frac{1}{5})$ is the only primary of Yang-Lee CFT.

Hao-Lan Xu (YITP, Stony Brook)

Analyticity properties of 2d Ising Field Theories

October 3, 2023

11 / 50

Pirsa: 23100073 Page 12/40

³Aleksandr B Zamolodchikov. "Integrals of motion and S-matrix of the (scaled) T= T c Ising model with magnetic field". In: International Journal of Modern Physics A 4.16 (1989), pp. 4235–4248.

⁴ John L Cardy. "Conformal invariance and the Yang-Lee edge singularity in two dimensions". In: *Physical review letters* 54.13 (1985), p. 1354.

⁵John L. Cardy and G. Mussardo. "S Matrix of the Yang-Lee Edge Singularity in Two-Dimensions". In: *Phys. Lett.* B225 (1989), pp. 275–278. DOI: 10.1016/0370-2693 (89) 90818-6.

Big picture and the goal of the Project: Ising Spectroscopy

- Goal: Try to understand the space of Ising QFTs non-perturbatively.
- Near criticality and integrable points: able to use conformal perturbation theory and form-factor perturbation theory, and some exact results are available.
- Away from special points: some constraints from symmetries and scenarios.

Analyticity structures of scaling functions would provide important information.

Hao-Lan Xu (YITP, Stony Brook)

Analyticity properties of 2d Ising Field Theories

October 3, 2023

Analyticity properties at high-T.

• High-T standard analyticity conjecture: some universal scaling functions are analytical functions on the complex ξ^2 -plane, except on the YL branch cut. i.e.: Free energy $\mathcal{G}(\xi)^6$, first mass $\hat{M}_1(\xi)^7$, effective φ^3 coupling⁸.

• High-T dispersion relation of $\hat{M}_1(\xi^2) = M_1(m,h)/|m|$:

$$\hat{M}_1(\xi^2) = 1 + \xi^2 \int_{\xi_0^2}^{\infty} \frac{dx}{\pi} \frac{\Im m \, \hat{M}_1(-x+i0)}{x(x+\xi^2)} \, .$$

⁶P Fonseca and A Zamolodchikov. "Ising field theory in a magnetic field: analytic properties of the free energy". In: *Journal of statistical physics* 110.3-6 (2003), pp. 527–590.

⁷Hao-Lan Xu and Alexander Zamolodchikov. "2D Ising Field Theory in a magnetic field: the Yang-Lee singularity". In: *JHEP* 08 (2022), p. 057. DOI: 10.1007/JHEP08 (2022) 057. arXiv:2203.11262 [hep-th].

⁸Hao-Lan Xu and Alexander Zamolodchikov. "Ising Field Theory in a magnetic field: φ^3 coupling at $T > T_c$ ". In: (Apr. 2023). arXiv:2304.07886 [hep-th].

Hao-Lan Xu (YITP, Stony Brook)

Analyticity properties of 2d Ising Field Theories

October 3, 2023

Properties of the Yang-Lee branch cut.

• At pure imaginary ξ : not unitary, with reality properties due to "pseudo-hermiticity".

$$\exists S^2 = 1$$
, so that $H^{\dagger} = SHS$.

- Thus spectrum bounded, with either unique ground state with real F or two vacua $|0_{\pm}\rangle$ with complex conjugate F_{\pm} . Similar properties work for M_1 .
- The Yang-Lee branch cut represents line of complex first order phase transition.
- Mean field theory description of Yang-Lee branch cut: φ^3 theory with complex coupling⁹¹⁰. Then the singularity at $\xi^2 = -\xi_0^2$ represents continuous phase transition, and the scaling behaviours should be controlled by the Yang-Lee CFT.

⁹ John L Cardy. "Conformal invariance and the Yang-Lee edge singularity in two dimensions". In: *Physical review letters* 54.13 (1985), p. 1354.

Hao-Lan Xu (YITP, Stony Brook)

Analyticity properties of 2d Ising Field Theories

October 3, 2023

¹⁰ John L. Cardy and G. Mussardo. "S Matrix of the Yang-Lee Edge Singularity in Two-Dimensions". In: *Phys. Lett.* B225 (1989), pp. 275–278. DOI: 10.1016/0370-2693 (89) 90818-6.

Properties of the Yang-Lee singularity.

• When $\xi^2 = -\xi_0^2$: YLCFT as IR fixed point \Longrightarrow controlling critical behaviours. For ξ^2 near $-\xi_0^2$: using effective action:

$$\mathcal{A}_{\mathsf{eff}} = \mathcal{A}_{(2,5)}^* + \lambda(\xi^2) \int \phi(x) d^2 x + \sum g_i(\xi^2) \int \mathcal{O}_i(x) d^2 x \,,$$

where irrelevant scalars $\mathcal{O}_i \in \mathcal{V}_{(2,5)}$, the Hilbert space of YLCFT.

- Effective couplings are regular near $-\xi_0^2$, say $g_i = g_i^{(0)} + (\xi^2 + \xi_0^2)g_i^{(1)} + \cdots$
- Constant ξ_0^2 can be numerically measured with singular behaviours.
- Using dimensional analysis: singular expansions of scaling functions near $-\xi_0^2$. Since $[\lambda] = \frac{12}{5}$, the leading critical behaviours are:

$$\hat{M}_1(\xi^2) = (\xi^2 + \xi_0^2)^{\frac{5}{12}} (b_0 + \cdots), \quad \mathcal{G}(\xi^2) = (\xi^2 + \xi_0^2)^{\frac{5}{6}} (B_0 + \cdots),$$

following $\lambda(\xi^2) = (\xi^2 + \xi_0^2)\lambda_1 + \cdots$.

• Beyond leading ones: irrelevant operator \mathcal{O}_i with mass dimension Δ_i

$$\delta_i \hat{M}_1(\xi^2)/(\xi^2 + \xi_0^2)^{\frac{5}{12}} \propto (\xi^2 + \xi_0^2)^{\frac{5}{12}(\Delta_i - 2)}$$
.

from $g_i M_1^{\Delta_i - 2}$ is dimensionless, while $M_1 \sim (\xi^2 + \xi_0^2)^{\frac{5}{12}}$.

Hao-Lan Xu (YITP, Stony Brook)

Analyticity properties of 2d Ising Field Theories

October 3, 2023

Finding the location of Yang-Lee point.

• The regular behaviour of $\mathcal{R}_1 \Longrightarrow$ location of Yang-Lee critical point, as:

$$\mathcal{R}_1(\xi^2) = \hat{M}_1(\xi^2) / (\xi^2 + \xi_0^2)^{\frac{5}{12}} = b_0 + b_1(\xi^2 + \xi_0^2) + c_0(\xi^2 + \xi_0^2)^{\frac{5}{6}} + \cdots$$

• Numerical result: $\xi_0^2 = 0.035846(4)^{1112}$.

¹¹Hao-Lan Xu and Alexander Zamolodchikov. "2D Ising Field Theory in a magnetic field: the Yang-Lee singularity". In: *JHEP* 08 (2022), p. 057. DOI: 10.1007/JHEP08 (2022) 057. arXiv:2203.11262 [hep-th].

Hao-Lan Xu (YITP, Stony Brook)

Analyticity properties of 2d Ising Field Theories

October 3, 2023

16 / 56

Pirsa: 23100073 Page 17/40

¹² Vladimir V. Mangazeev, Bryte Hagan, and Vladimir V. Bazhanov. "Corner Transfer Matrix Approach to the Yang-Lee Singularity in the 2D Ising Model in a magnetic field". In: (Aug. 2023). arXiv:2308.15113 [hep-th].

Singular behaviour of M_1 near Yang-Lee point.

• Singular expansion of $\hat{M}_1(\xi^2)$: (c_0 from $T\bar{T}$ with dimension 4.)

$$\hat{M}_1(\xi^2) = (\xi^2 + \xi_0^2)^{\frac{5}{12}} (b_0 + b_1(\xi^2 + \xi_0^2) + c_0(\xi^2 + \xi_0^2)^{\frac{5}{6}} + \cdots),$$

The amplitudes are measurable and give effective couplings.

• Measurements: $b_0 = 4.228(5)$, $b_1 = 21.9(9)$ and $c_0 = -14.4(6)$.

Hao-Lan Xu (YITP, Stony Brook)

Analyticity properties of 2d Ising Field Theories

October 3, 2023

Numerical check of high-T dispersion relation of M_1 .

- Near $\xi^2 = -\infty$: regular expansion in m or η since $\varepsilon(x)$ is relevant.
- Able to build discontinuities and check the dispersion relation in high-T.

Pirsa: 23100073 Page 19/40

Analyticity properties at low-T (I).

- By choosing $\langle \sigma \rangle = +\bar{\sigma}$ as vacuum: scaling functions are single valued functions for real positive ξ .
- Analyticity conjecture for low-T: both $\hat{M}_1(\xi)^{13}$ and $\mathcal{G}(\xi)^{14}$ can be analytically continued to the full complex ξ -plane from positive real axis, leaving discontinuities along the Fisher-Langer's branch cut: $-\infty < \xi < 0$.

¹³Hao-Lan Xu. "Ising Field Theory in a Magnetic Field: Extended analyticity properties of M_1 ". In: In preparation (2023).

Hao-Lan Xu (YITP, Stony Brook)

Analyticity properties of 2d Ising Field Theories

October 3, 2023

19 / 56

Pirsa: 23100073 Page 20/40

¹⁴ P Fonseca and A Zamolodchikov. "Ising field theory in a magnetic field: analytic properties of the free energy". In: Journal of statistical physics 110.3-6 (2003), pp. 527–590.

Analyticity properties at low-T (II).

• Low-T dispersion relation of $\hat{M}_1(\xi)$: (and similarly for $\mathcal{G}(\xi)$)

$$\hat{M}_1(\xi) = 2 + \xi \int_0^{+\infty} \frac{dt}{\pi} \frac{\Im m \, \hat{M}_1(-\xi + i0)}{t(t + \xi)},$$

as an integral on FL branch cut $-\infty < \xi < 0$, with no other singularity.

• However, at the condensation point $\xi \to 0^-$ there exist non-analytic contributions to the discontinuities, leads to an essential singularity here.

Hao-Lan Xu (YITP, Stony Brook)

Analyticity properties of 2d Ising Field Theories

October 3, 2023

Fisher-Langer's branch cut and essential singularities (I).

• Scaling functions are expandable at $\xi = 0$ and $\xi = \infty$, i.e.:

$$\hat{M}_1(\xi) = 2 + a_1 \xi^{2/3} + a_2 \xi^{4/3} + \cdots, \quad \text{at} \quad \xi \to 0,$$

$$\hat{M}_1(\xi) = m_1^{(0)}/\eta + m_1^{(1)} + m_1^{(2)}\eta + \cdots = m_1^{(0)} \xi^{8/15} + \cdots, \quad \text{at} \quad \xi \to \infty.$$

- Small positive $\xi \Longrightarrow$ choosing the stable vacuum. Analytically continuing $\xi \to e^{\pm \pi i} \xi \Longrightarrow$ exchange the roles of both vacuums.
- Thus, $\xi = -\epsilon \pm i0$ would correspond to IFT sitting in the metastable vacuum, and the tunneling effects would contribute to the scaling functions.

Hao-Lan Xu (YITP, Stony Brook)

Analyticity properties of 2d Ising Field Theories

October 3, 2023

Fisher-Langer's branch cut and essential singularities (II).

- ullet At finite T, in the metastable vacuum thermal fluctuation would generate "bubbles" of stable vacuum. Big bubbles would condensate and cause the vacuum decay.
- Computations of bubbles in metastable states would give at $\xi \to 0^-$, i.e. ¹⁵¹⁶¹⁷:

$$\Im m \mathcal{G} \to \frac{\lambda}{4\pi} e^{-\frac{\pi}{\lambda}}, \quad \Im m \, \hat{M}_1 \to (\text{Analytic terms}) + \frac{1}{\pi} e^{-\frac{\pi}{\lambda}} + \cdots.$$

where $\lambda = -2\bar{s}\xi > 0$.

• The metastable F(m,h) is related to the vacuum decay rate: $\Im m F_{\text{meta}} \sim \Gamma$.

¹⁵ James S Langer. "Theory of the condensation point". In: *Annals of Physics* 281.1-2 (2000), pp. 941–990.

Hao-Lan Xu (YITP, Stony Brook)

Analyticity properties of 2d Ising Field Theories

October 3, 2023

¹⁶M. B. Voloshin. "DECAY OF FALSE VACUUM IN (1+1)-DIMENSIONS". In: Yad. Fiz. 42 (1985), pp. 1017–1026.

¹⁷ Hao-Lan Xu. "Ising Field Theory in a Magnetic Field: Extended analyticity properties of M_1 ". In: In preparation (2023).

Low-T dispersion relations with Langer's branch cut.

- By approximating discontinuities, the low-T dispersion relation can be verified.
- For $\hat{M}_1(\xi)$, computation shows the non-analytic term is negligible. Also for $\hat{M}_2(\xi)$ and $\hat{M}_3(\xi)$ similar dispersion relations exist, and can be checked.

Pirsa: 23100073 Page 24/40

Spinodal point on Fisher-Langer's branch cut?

- Behaviours at $\xi \to 0^-$ is given by the decay of metastable vacuum, which is due to thermal fluctuations and tunneling effects.
- However, at $\xi \to -\infty$ there would be only one true vacuum, and the phase transition should happened classically.
- From mean field theory point of view, at negative ξ there exist a point where the metastable vacuum becomes classically unstable, and the picture changes.
- The point is known as spinodal point. However, no other singularity found on the discontinuities¹⁸. Where is and what happened to the spinodal point?

18 V Privman and LS Schulman. "Analytic continuation at first-order phase transitions". In: Journal of Statistical Physics 29 (1982)

Hao-Lan Xu (YITP, Stony Brook)

Analyticity properties of 2d Ising Field Theories

October 3, 2023

24 / 56

Pirsa: 23100073 Page 25/40

Extended analyticity conjectures: connecting all-T

- The analyticity conjectures on $\xi = h/|m|^{\frac{15}{8}}$ plane treat $T < T_c$ and $T > T_c$ differently. How about on the complex $\eta = m/h^{\frac{8}{15}} = \xi^{-8/15}$ plane?
- $-\frac{8\pi}{15} \le \text{Arg } \eta \le +\frac{8\pi}{15}$: Low-T wedge (LTW), represents the full ξ -plane with m>0.
- $-\frac{4\pi}{15} \leq \text{Arg}(-\eta) \leq +\frac{4\pi}{15}$: High-T wedge₊ (HTW₊), represents $\Re e \, \xi > 0$ for m < 0.
- In between: shadow domain (SD), which is under the FL branch cut.
- YL branch cut: $\eta = -ye^{\pm\frac{4\pi i}{15}}$ with $y \leq Y_0$, $Y_0 \approx 2.4293$.

Hao-Lan Xu (YITP, Stony Brook)

Analyticity properties of 2d Ising Field Theories

October 3, 2023

Extended analyticity conjectures: scaling functions on the η -plane.

- Scaling functions on the η -plane: to avoid pole at $\eta=0$, use instead: For real η : $\mathcal{M}_1(\eta)=M_1/|h|^{\frac{8}{15}}$ and $\tilde{\Phi}(\eta)=F/|h|^{\frac{16}{15}}-\frac{\eta^2}{8\pi}\log|h|^{\frac{16}{15}}$.
- For complex η , possible to rotate YL branch cut by redefinitions in SD.
- Near YL point the singular expansion also continued, as $y \to -Y_0 + (y Y_0)e^{\pi i}$.
- The discontinuities on the rotated branch cuts are now controlled by the behaviours near YL point and FF point.
- Question: what are the analytical structures within the SD?

Hao-Lan Xu (YITP, Stony Brook)

Analyticity properties of 2d Ising Field Theories

October 3, 2023

Extended analyticity conjecture as minimal conjecture.

- Extended analyticity conjecture: the scaling function is analytical anywhere on the complex η -plane, except on the rotated YL branch cuts¹⁹²⁰.
- No extra singularities within SD, YL point is the nearest one under FL branch cut.
- The extended analyticity conjecture is the most elegant conjecture. Meanwhile, if other singularities exist, then one must consider their physical interpretations.

¹⁹P Fonseca and A Zamolodchikov. "Ising field theory in a magnetic field: analytic properties of the free energy". In: *Journal of statistical physics* 110.3-6 (2003), pp. 527–590.

²⁰Hao-Lan Xu. "Ising Field Theory in a Magnetic Field: Extended analyticity properties of M_1 ". In: In preparation (2023).

Hao-Lan Xu (YITP, Stony Brook)

Analyticity properties of 2d Ising Field Theories

October 3, 2023

27 / 50

Pirsa: 23100073 Page 28/40

Extended dispersion relations.

• As a result, the extended dispersion relation can be formulated, for example:

$$\mathcal{M}_{1}(\eta) = M_{1}^{(0)} + M_{1}^{(1)} \eta + \frac{2\eta^{2}}{\pi} \int_{Y_{0}}^{\infty} \frac{dy}{y^{2}} \frac{y \Re e \left(e^{-\frac{11\pi i}{15}} \Delta_{1}(y)\right) - \eta \Re e \Delta_{1}(y)}{y^{2} - 2\cos\left(\frac{11\pi}{15}\right)\eta y + \eta^{2}},$$
where $\Delta_{1}(y) = \frac{i}{2} e^{\frac{4\pi i}{15}} \left[\hat{\mathcal{M}}_{1}(ye^{\frac{11\pi i}{15} + i0}) - \hat{\mathcal{M}}_{1}(ye^{\frac{11\pi i}{15} - i0}) \right].$

• $\Delta(y)$ can be approximated using expressions near $\eta = \infty$ and $y = Y_0$.

Hao-Lan Xu (YITP, Stony Brook)

Analyticity properties of 2d Ising Field Theories

October 3, 2023

Pirsa: 23100073 Page 30/40

Extended dispersion relations.

• As a result, the extended dispersion relation can be formulated, for example:

$$\mathcal{M}_{1}(\eta) = M_{1}^{(0)} + M_{1}^{(1)} \eta + \frac{2\eta^{2}}{\pi} \int_{Y_{0}}^{\infty} \frac{dy}{y^{2}} \frac{y \Re e \left(e^{-\frac{11\pi i}{15}} \Delta_{1}(y)\right) - \eta \Re e \Delta_{1}(y)}{y^{2} - 2\cos\left(\frac{11\pi}{15}\right)\eta y + \eta^{2}},$$
where $\Delta_{1}(y) = \frac{i}{2} e^{\frac{4\pi i}{15}} \left[\hat{\mathcal{M}}_{1}(ye^{\frac{11\pi i}{15} + i0}) - \hat{\mathcal{M}}_{1}(ye^{\frac{11\pi i}{15} - i0}) \right].$

• $\Delta(y)$ can be approximated using expressions near $\eta = \infty$ and $y = Y_0$.

Hao-Lan Xu (YITP, Stony Brook)

Analyticity properties of 2d Ising Field Theories

October 3, 2023

Pirsa: 23100073 Page 32/40

Numerical verification of extended dispersion relations of M_1 (III)

• For Arg $\eta = \frac{11\pi}{15}$, numerical verification is possible by comparing with expansions.

Pirsa: 23100073 Page 33/40

Extended analyticity conjecture and true spinodal point.

- How about the spinodal singularity? The low-T analyticity conjecture indicates that perturbations would "push down" the spinodal point inside the FL branch cut.
- Furthermore, by no other singularity within SD, we can recognize that the YL point is the non-perturbative spinodal point, and near which the scaling behaviours following the Yang-Lee universality class.
- It would be very interesting to see how this picture works for higher dimensions²¹.

²¹ Xin An, David Mesterhazy, and Mikhail A Stephanov. "On spinodal points and Lee-Yang edge singularities". In: *Journal of Statistical Mechanics: Theory and Experiment* 2018.3 (2018), p. 033207.

Hao-Lan Xu (YITP, Stony Brook)

Analyticity properties of 2d Ising Field Theories

October 3, 2023

32 / 56

Pirsa: 23100073 Page 34/40

2d Ising scattering matrices.

ullet Away from integrable points: evolution of $S(\theta)$ analytical structure.

Hao-Lan Xu (YITP, Stony Brook)

Analyticity properties of 2d Ising Field Theories

October 3, 2023

35 / 56

Pirsa: 23100073 Page 35/40

Evolution of 2d Ising scattering matrices.

• Decreasing ξ^2 from $+\infty$ to $-\xi_0^2$, or decreasing η from 0 to $-\infty$ then to $y=-Y_0$.

Hao-Lan Xu (YITP, Stony Brook)

Analyticity properties of 2d Ising Field Theories

October 3, 2023

Evolution of 2d Ising scattering matrices.

- To describe the evolution quantitatively, perturbation theory can't help much.
- From $S(\theta)$ some scaling functions can be defined, and the corresponding dispersion relations can be established.
- Example (I)²⁴:

$$\kappa = \kappa(\xi^2) = \frac{\sqrt{3}i}{2} \mathop{\rm Res}_{\theta = \frac{2\pi i}{3}} S(\theta) = -\frac{\sqrt{3}}{2} \Gamma^2 \,,$$

which is proportional to the square effective 3-particle coupling of A_1 , and also readable from the coefficient of leading exponential decay of $E_1(R)$.

Example (II):

$$C_2 = C_2(\xi^2) = \frac{1}{B_2} = \frac{1}{\sin \alpha_2}$$

describes the location of pole α_2 , and related to the mass M_2 when α_2 still in PS.

Both of these scaling functions have corresponding dispersion relations in high-T.

24 Hao-Lan Xu and Alexander Zamolodchikov. "Ising Field Theory in a magnetic field: φ^3 coupling at $T>T_c$ ". In: (Apr. 2023). arXiv:2304.07886 [hep-th].

Hao-Lan Xu (YITP, Stony Brook)

Analyticity properties of 2d Ising Field Theories

October 3, 2023

The dispersion relations.

- To establish (and verify) corresponding dispersion relations in high-T, the key is to find the discontinuity along the Yang-Lee branch cut.
- Near both Yang-Lee point and E_8 point, the form factor perturbation theory could help. For example, perturbing action with term $g \int \mathcal{O}(x) d^2x$ would leads to:

$$S(\theta) \to S(\theta) \left[1 + i \frac{g}{\sinh \theta} \left(f_{\text{reg}}^{\mathcal{O}}(\theta) - 2i S^{-1}(\theta) S'(\theta) F_2^{\mathcal{O}}(\pi i) \cosh \theta \right) \right],$$

where the components come from the 4-point form factor:

$$F_4^{\mathcal{O}}(\theta_1',\theta_2'|\theta_1,\theta_2) = -i\Big(\frac{\epsilon_1}{\epsilon_2} + \frac{\epsilon_2}{\epsilon_1}\Big)S^{-1}(\theta_{12})S'(\theta_{12})F_2^{\mathcal{O}}(\pi i) + f_{\text{reg}}^{\mathcal{O}}(\theta_{12}) + O(\epsilon_1,\epsilon_2)\,.$$

- Near Yang-Lee point: use effective action with irrelevant form factors, sometimes as perturbing the phase $\Delta(\theta)$.
- Near E_8 point, use form factors of energy operator $\varepsilon(x)$ (quite complicated).
- The dispersion relation of $\kappa(\xi^2)$ has been verified, with others ongoing.

Hao-Lan Xu (YITP, Stony Brook)

Analyticity properties of 2d Ising Field Theories

October 3, 2023

Summary and Outlooks.

Summary: analyticity structure of 2d Ising field theories:

- Basics of 2d Ising field theory, theory space and scaling functions;
- Disordered/Ordered phases and different scenarios, Yang-Lee & Fisher-Langer;
- Analyticity properties of scaling functions and their dispersion relations;
- Extended analyticity and extended dispersion relation on η -plane;
- Analytical structures of S-matrices and their evolution in parameter space.

Outlook: unsolve questions and future directions:

- Goal: understand the structure of theory space of 2d IFTs non-perturbatively.
- Difficulties: limitations of both numerical methods and perturbative calculations, conceptual difficulties when consider some complicated phenomenons.
- Unsolved questions: (On going)
 - (i): Evolution of $S(\theta)$ in low-T: McCoy-Wu scenario of meson, classical scattering with confining interaction, Bethe-Salpeter equation, etc.
 - (ii): UV behaviours of scattering, inelastic scattering, and parities of poles.

Hao-Lan Xu (YITP, Stony Brook)

Analyticity properties of 2d Ising Field Theories

October 3, 2023

41 / 56

Pirsa: 23100073 Page 39/40

Thank You for Listening!

Special thanks: prof. Zamolodchikov for his guidance.

Hao-Lan Xu (YITP, Stony Brook)

Analyticity properties of 2d Ising Field Theories

October 3, 2023

42 / 56

Pirsa: 23100073 Page 40/40