Title: Poster Prize Talk

Speakers:

Collection: Puzzles in the Quantum Gravity Landscape: viewpoints from different approaches

Date: October 26, 2023 - 1:10 PM

URL: https://pirsa.org/23100019

Pirsa: 23100019 Page 1/28

Pirsa: 23100019 Page 2/28

Parameterizations of black-hole spacetimes beyond circularity

Class.Quant.Grav. 39 (2022) 13, 134002, arXiv:2203.00105v2

Héloïse Delaporte CP3-Origins, SDU

Puzzles in the Quantum Gravity lanscape conference, Perimeter Institute

October 26, 2023

Héloïse Delaporte (SDU)

Puzzles in the QG landscape

October 26, 2023

1/10

Pirsa: 23100019 Page 3/28

Disclaimers

- None of the following black-hole (BH) spacetime metrics which follow arise from an action principle
 - \implies Parameterized approach
- None of the following BH spacetime metrics are intrinsically quantum, just Quantum Gravity (QG) inspired
 - \Longrightarrow "beyond GR"

Héloïse Delaporte (SDU)

Puzzles in the QG landscape

October 26, 2023

2/10

Pirsa: 23100019 Page 4/28

Pirsa: 23100019 Page 5/28

- Tests of GR and Kerr hypothesis:
 - We entered the regime of BH near-horizon tests \rightarrow BH shadow images [Broderick '21; E.H.T. Collaboration '19, '22]
 - How do QG inspired BH spacetimes look like (e.g. in shadow images)?
 [Held '19]

Héloïse Delaporte (SDU)

Puzzles in the OG landscape

October 26, 2023

3/10

Pirsa: 23100019 Page 6/28

- Tests of GR and Kerr hypothesis:
 - We entered the regime of BH near-horizon tests \rightarrow BH shadow images [Broderick '21; E.H.T. Collaboration '19, '22]
 - How do QG inspired BH spacetimes look like (e.g. in shadow images)?
 [Held '19]
 - How do they look like in terms of their spacetime symmetries?

Héloïse Delaporte (SDU)

Puzzles in the OG landscape

October 26, 2023

3/10

Pirsa: 23100019 Page 7/28

- Tests of GR and Kerr hypothesis:
 - We entered the regime of BH near-horizon tests → BH shadow images [Broderick '21; E.H.T. Collaboration '19, '22]
 - How do QG inspired BH spacetimes look like (e.g. in shadow images)?
 [Held '19]
 - How do they look like in terms of their spacetime symmetries?
- Focus on axisymmetric, stationary and asymptotically flat BH spacetimes

Héloïse Delaporte (SDU) Puzzles in the QG landscape October 26, 2023

3/10

Pirsa: 23100019 Page 8/28

- Tests of GR and Kerr hypothesis:
 - We entered the regime of BH near-horizon tests → BH shadow images [Broderick '21; E.H.T. Collaboration '19, '22]
 - How do QG inspired BH spacetimes look like (e.g. in shadow images)?
 [Held '19]
 - How do they look like in terms of their spacetime symmetries?
- Focus on axisymmetric, stationary and asymptotically flat BH spacetimes
- Different approaches to answer those questions, among which the parameterized approach

Héloïse Delaporte (SDU)

Puzzles in the QG landscape

October 26, 2023

3/10

Pirsa: 23100019 Page 9/28

The parameterized approach • 3 different approaches to study BH spacetimes beyond GR:

Pirsa: 23100019 Page 10/28

Puzzles in the QG landscape

October 26, 2023

4/10

Héloïse Delaporte (SDU)

The parameterized approach

• 3 different approaches to study BH spacetimes beyond GR:

Fundamental (top-down)

- Assumes specific form of new-physics (e.g. new fields, higher curvature terms etc.)
- Needs to be repeated for each different QG theory
- Not comprehensive

Héloïse Delaporte (SDU)

Puzzles in the QG landscape

October 26, 2023

4/10

Pirsa: 23100019 Page 11/28

The parameterized approach

• 3 different approaches to study BH spacetimes beyond GR:

Fundamental (top-down)

- Assumes specific form of new-physics (e.g. new fields, higher curvature terms etc.)
- Needs to be repeated for each different QG theory
- Not comprehensive

Parameterized (bottom-up)

- Parameterized deviations from GR BHs - could be constrained observationally
- Theory agnostic
- Example: Non-circular parameterizations of BHs

Héloïse Delaporte (SDU)

Puzzles in the QG landscape

October 26, 2023

4/10

Pirsa: 23100019 Page 12/28

The parameterized approach

• 3 different approaches to study BH spacetimes beyond GR:

Fundamental (top-down)

- Assumes specific form of new-physics (e.g. new fields, higher curvature terms etc.)
- Needs to be repeated for each different QG theory
- Not comprehensive

Principledparameterized

[Eichhorn, Held '21a,b]

- Parameterized deviations from GR motivated by new-physics guiding principles
- Can lead to regular BH spacetimes
- Example: Kerr metric with specific upgrade $M \to M(r, \chi)$

Parameterized (bottom-up)

- Parameterized deviations from GR BHs - could be constrained observationally
- Theory agnostic
- Example: Non-circular parameterizations of BHs

Héloïse Delaporte (SDU)

Puzzles in the QG landscape

October 26, 2023

4/10

Pirsa: 23100019 Page 13/28

$\underline{\mathbf{1}^{\mathrm{st}}}$ key result: existing parameterizations assume 1 or 2 symmetries

 Namely circularity & (sometimes also) additional (hidden) constant of motion

Héloïse Delaporte (SDU)

Puzzles in the QG landscape

October 26, 2023

5/10

Pirsa: 23100019 Page 14/28

1^{st} key result: existing parameterizations assume 1 or 2 symmetries

- Namely circularity & (sometimes also) additional (hidden) constant of motion
- Circularity holds if, for ξ_1, ξ_2 the two commuting Killing vectors

[Papapetrou '66], [Weyl 1917], [Lewis '32], [Konoplya, Rezzolla, Zhidenko '16]

$$\xi_1^\mu R_\mu^{\ [
u} \xi_2^\kappa \xi_1^{\lambda]} = 0$$
 everywhere,

$$\xi_2^\mu R_\mu^{\ [\nu} \xi_1^\kappa \xi_2^{\lambda]} = 0$$
 everywhere.

Implies a spacetime isometry. In Boyer-Lindquist (BL) coordinates: invariance under simultaneous transformation $t \to -t$, $\phi_{\rm BL} \to -\phi_{\rm BL}$

Héloïse Delaporte (SDU)

Puzzles in the QG landscape

October 26, 2023

5/10

1^{st} key result: existing parameterizations assume 1 or 2 symmetries

- Namely circularity & (sometimes also) additional (hidden) constant of motion
- Circularity holds if, for ξ_1, ξ_2 the two commuting Killing vectors

[Papapetrou '66], [Weyl 1917], [Lewis '32], [Konoplya, Rezzolla, Zhidenko '16]

$$\xi_1^\mu R_\mu^{\ [
u} \xi_2^\kappa \xi_1^{\lambda]} = 0$$
 everywhere,

$$\xi_2^\mu R_\mu^{\ [\nu} \xi_1^\kappa \xi_2^{\lambda]} = 0$$
 everywhere.

- Implies a spacetime isometry. In Boyer-Lindquist (BL) coordinates: invariance under simultaneous transformation $t \to -t$, $\phi_{\rm BL} \to -\phi_{\rm BL}$
- Constant of motion from rank-2 Killing tensor: $C=K_{\mu\nu}u^{\mu}u^{\nu}$ [Benenti, Francaviglia '79], [Johannsen '13], [Vigeland, Yunes, Stein '11]
- In vacuum GR $R_{\mu\nu}=0$, so circularity holds. But some non-vacuum GR & beyond GR spacetimes break circularity

[loka, Sasaki '03, '04], [Birkl, Stergioulas, Muller '11], [Minamitsuji '20], [Anson, Babichev, Charmousis, Hassaine '20]

Héloïse Delaporte (SDU)

Puzzles in the QG landscape

October 26, 2023

5/10

Pirsa: 23100019 Page 16/28

Parameterizations and symmetries

	Symmetries	Metric components	Free functions
BHs:	axisymmetry + stationarity	10 → <mark>6</mark>	at least 6

Héloïse Delaporte (SDU)

Puzzles in the QG landscape

October 26, 2023

6/10

Pirsa: 23100019 Page 17/28

Parameterizations and symmetries

	Symmetries	Metric components	Free functions
BHs:	axisymmetry + stationarity	10 → <mark>6</mark>	at least 6
add:	circularity	5	4 (LP form)

• Most general circular metric (BL preferred): [Johannsen '13]

$$ds_{RZ}^2 = -g_{tt}dt^2 - 2g_{t\phi_{\rm BL}}dtd\phi_{\rm BL} + g_{\phi_{\rm BL}}d\phi_{\rm BL}^2 + g_{rr}dr^2 + g_{\theta\theta}d\theta^2$$

5 non-zero metric components & 5 free functions ✓

Héloïse Delaporte (SDU)

Puzzles in the QG landscape

October 26, 2023

6/10

Parameterizations and symmetries

	Symmetries	Metric components	Free functions
BHs:	axisymmetry + stationarity	10 → <mark>6</mark>	at least 6
add:	circularity	5	4 (LP form)
	+ hidden constant	5	10 (of 1 coord.)

 Most general circular metric with new Carter-like hidden constant of motion: [Benenti, Francaviglia '79]

$$g^{\mu\nu}\partial_{\mu}\partial_{\nu} = \frac{1}{S_{x_1} + S_{x_2}} \Big[\left(G_{x_1}^{ij} + G_{x_2}^{ij} \right) \partial x_i \partial x_j + \Delta_{x_1} \partial x_1^2 + \Delta_{x_2} \partial x_2^2 \Big]$$

with i, j indices related to Killing coordinates, and 1, 2 to explicit coordinates

Héloïse Delaporte (SDU)

Puzzles in the QG landscape

October 26, 2023

6/10

2nd key result: more general non-circular parameterization

• Proposed non-circular parameterization of deviations from Kerr

Héloïse Delaporte (SDU) Puzzles in the QG landscape October 26, 2023 7/10

Pirsa: 23100019 Page 20/28

2nd key result: more general non-circular parameterization

- Proposed non-circular parameterization of deviations from Kerr
- Written in preferred Horizon-Penetrating (HP) coordinates:

$$\begin{split} ds_{\mathrm{HP}}^2 &= -\left(\frac{r^2 - 2Mr + a^2\chi^2}{r^2 + a^2\chi^2}\right) \left(1 + \Delta_{\mathrm{HP},\,1}(r,\chi)\right) du^2 + 2\left(1 + \Delta_{\mathrm{HP},\,2}(r,\chi)\right) dudr \\ &- 4\frac{Mar}{r^2 + a^2\chi^2} (1 - \chi^2) (1 + \Delta_{\mathrm{HP},\,3}(r,\chi)) dud\phi - 2a(1 - \chi^2) (1 + \Delta_{\mathrm{HP},\,4}(r,\chi)) drd\phi \\ &+ \frac{r^2 + a^2\chi^2}{1 - \chi^2} (1 + \Delta_{\mathrm{HP},\,5}(r,\chi)) d\chi^2 \\ &+ \frac{1 - \chi^2}{r^2 + a^2\chi^2} \left(\left(a^2 + r^2\right)^2 - a^2\left(r^2 - 2Mr + a^2\right) (1 - \chi^2) \right) (1 + \Delta_{\mathrm{HP},\,6}(r,\chi)) d\phi^2 \end{split}$$

satisfying:

- Asymptotic flatness & correct Newtonian limit: $\Delta_{\mathrm{HP,\,i}}(r,\chi) \sim \mathcal{O}\left(\frac{1}{r^2}\right)$
- Flat Minkowski limit as $M \to 0$: only reached for $\Delta_{\mathrm{HP,\,i}}(r,\chi) \sim M$ & no extra quantum hair

Héloïse Delaporte (SDU)

Puzzles in the QG landscape

October 26, 2023

7/10

Relating non-circular and circular parameterizations

• Challenge: directly relating non-circular HP parameterization to general circular BL parameterization

Héloïse Delaporte (SDU)

Puzzles in the QG landscape

October 26, 2023

8/10

Pirsa: 23100019 Page 22/28

Relating non-circular and circular parameterizations

- Challenge: directly relating non-circular HP parameterization to general circular BL parameterization
 - ⇒ Use a counting argument as proof-of-principle:

6 from
$$\Delta_{\mathrm{HP,i}}, 1 \leq i \leq 6$$

+ 8 from coord. transfo. preserving $du = dt + \ldots$
& $d\phi = d\phi_{\mathrm{BL}} + \ldots$

Héloïse Delaporte (SDU)

Puzzles in the QG landscape

October 26, 2023

8/10

Pirsa: 23100019 Page 23/28

Relating non-circular and circular parameterizations

- Challenge: directly relating non-circular HP parameterization to general circular BL parameterization
 - ⇒ Use a counting argument as proof-of-principle:

```
\begin{array}{c} \text{ 6 from } \Delta_{\mathrm{HP,i}}, 1 \leq i \leq 6 \\ + \text{ 8 from coord. transfo. preserving } du = dt + \dots \\ & d\phi = d\phi_{\mathrm{BL}} + \dots \\ & 5 \text{ from vanishing } g_{\mu\nu} \text{ in } ds_{RZ}^2 \\ & + \text{ 4 diff. constraints on coord. transfo. functions} \end{array}
```

→ Matches most general circular parameterization in BL coordinates
✓ 1 function too many for LP form [Papapetrou '66], [Kundt, Trumper '66], [Wald '84]

Héloïse Delaporte (SDU)

Puzzles in the QG landscape

October 26, 2023

8/10

Pirsa: 23100019 Page 24/28

$3^{\rm rd}$ key result: non-circular spacetimes seem to have specific image features

• Example included in non-circular HP parameterization: regular BH - obtained via principled-parameterized approach - with upgrade $M \to M(r,\chi)$

Héloïse Delaporte (SDU)

Puzzles in the OG landscape

October 26, 2023

9/10

Pirsa: 23100019 Page 25/28

<u>3rd key result</u>: non-circular spacetimes seem to have specific image features

- Example included in non-circular HP parameterization: regular BH obtained via principled-parameterized approach with upgrade $M \to M(r,\chi)$
- Obtained by taking in non-circular parameterization ds_{HP}^2 $\Delta_{\mathrm{HP},2/4/5}=0$, $\Delta_{\mathrm{HP},1}=\frac{2r(M-M(r,\chi))}{r^2+a^2\chi^2-2Mr}$, $\Delta_{\mathrm{HP},3}=\frac{M(r,\chi)-M}{M}$, $\Delta_{\mathrm{HP},6}=-\frac{2a^2(M(r,\chi)-M)r(\chi^2-1)}{r^4+a^4\chi^2+a^2r(2M+r(r-2M)\chi^2)}$ [HD, Eichhorn, Held '22]

- Non-circular: 3 specific image features
 - Cusps (in shadow boundary & photon rings)
 - \implies Dent at y = 0 axis
 - \Rightarrow Broken reflection symmetry about y = 0 axis

Héloïse Delaporte (SDU)

Puzzles in the QG landscape

October 26, 2023

9/10

Pirsa: 23100019 Page 27/28

Puzzling open questions

- How to relate the proposed non-circular parameterization (in HP coord.) to the most general circular parameterization (in BL coord.)?
- What is the minimal, general, non-circular parameterization of axisymmetric, stationary and asymptotically flat BH?
- On we establish a one-to-one map between non-circularity and the 3 specific image features seen in BH shadow images?
- What is the impact of the non-constant angular velocity of a non-circular spacetime - at the event horizon on BH thermodynamics?

Héloïse Delaporte (SDU)

Puzzles in the QG landscape

October 26, 2023

10 / 10

Pirsa: 23100019 Page 28/28