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Abstract: | will discuss how one can use balance laws in full non-linear general relativity in order to test waveform models (arXiv:2309.12505)

The presenter will be joining via Zoom for this talk.
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Balance Laws as Test of Gravitational

Waveforms

* A pedagogical introduction into this subject is given in

PHILOSOPHICAL
TRANSACTIONS A

royalsocietypublishing.org/journal/rsta
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Subject Areas:
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Balance Laws as Test of
Gravitational Waveforms

Lavinia stermbergf

lnstitute for Theoretical Physics, Philosophenweg 16,

69120 Heidelberg, Germany

Gravitational waveforms play a crucial role in
comparing observed signals to theoretical predictions.
However, obtaining accurate analytical waveforms
directly from general relativity remains challenging.
Existing methods involve a complex blend of post-
Newtonian theory, effective-one-body formalism,
numerical relativity, and interpolation, introducing
systematic errors. As gravitational wave astronomy
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Black Holes
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Black Holes: The Schwarzschild Black Hole

The Schwarzschild black hole is a vacuum solution of Einstein’s
field equations which corresponds to
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Black Holes: The Schwarzschild Black Hole

To derive the Schwarzschild solution, we impose

r(ﬁﬁrg;w 0) Stationarity (time—translation invariance)

£’R1 Q“uy 0

E'R.g Guv 0

(LR Guw = 0
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Black Holes: The Schwarzschild Black Hole

To derive the Schwarzschild solution, we impose

p
Eﬁr.un v
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LR\ Guv _ | 9te(r) gee(r) 0 0
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Black Holes: The Schwarzschild Black Hole

Insert this ansatz metric into the vacuum Einstein field equations,
G, =0
I_J,U
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Black Holes: The Schwarzschild Black Hole

e Boundary condition 1: Spacetime is asymptotically Minkowski,

lim ) ="n,,
e .q;u/( ) Juv
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Black Holes: The Schwarzschild Black Hole

e Boundary condition 2: Far away from the source, we should
recover Newton’s law

i ) G M
r — — — -
tt ,r.z
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Black Holes: The Schwarzschild Black Hole

Different gauge choices lead to different looking solutions. For
instance:

Painlevé—Gullstrand gauge:

p 2M - 2M ) 5 o
dséG - — (l _ ) dt? + 2 ,—.dt dr 4+ dr? + r? dQ?

(A r
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Black Holes: The Schwarzschild Black Hole

The solutions look different, but they are physically
equivalent. In particular, they agree on all physical
predictions such as

e Gravitational redshift & time dilation

e Bending of light

e Existence of event horizons

* etc.
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Black Holes: The Schwarzschild Black Hole

Important consequence: spherically symmetric, pulsating
stars do not emit gravitational waves
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Stationary Black Hole Solutions

Schwarzschild

Reissner—Nordstrom Kerr-Newman
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The No Hair Theorem

All stationary BH solutions of the Einstein field equations coupled to
Standard Model matter are completely characterised by only three

externally measurable parameters: Mass M, charge Q, angular
momentum J.
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Black Holes Merger

* When two black holes merge the system is highly non—-spherical
symmetric and non-stationary.

e The no—hair theorem is broken.

* When two black holes merge they emit a GW signal

Pirsa: 23100017 Page 17/94



View Options

Pirsa: 23100017 Page 18/94




You are viewing Lavinia Helsenberg's screen

Gravitational Waves

 How do we determine the total power output?
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Gravitational Waves

e How can we test different theories of gravity?
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Gravitational Waves

Gravitational Waveforms!
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Time: -0.49 seconds
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Gravitational Waveforms

Time: -0.49 seconds

GW151012
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Gravitational Waveforms
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* From frequency evolution, one infers the masses
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Gravitational Waveforms
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¢ From the amplitude and the masses, one infers the distance
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Gravitational Waveforms

T
9

t (seconds)

* From time of arrival, amplitude, and phase at the detectors, one
infers the sky location

\
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Gravitational Waves: Polarizations

h. h.
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Gravitational Waves: Polarizations
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Gravitational-Wave Polarization
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Gravitational Waveform

We have to solve Einstein’s field equations in order to generate
the GW waveform

G =8nG T,
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Gravitational Waveform

Inspiral phase

° ¢

VAVAVAVA'

Post—Newtonian Approximation
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Gravitational Waveform

= S
|

Numerical
Relativity
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Gravitational Waveform
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Gravitational Waveform

Inspiral phase

Post—Newtonian Approximation

Numerical
Relativity
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Gravitational Waveform Models

These three phases of a waveform require different approximation
techniques:

e Perturbation Theory for the ringdown phase
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Gravitational Waveform Models

To get the full waveform, it is necessary to combine these
approximated phases together into a so—called waveform model
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Gravitational Waveform Models

There are many different waveform models. The non—exhaustive
list includes
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Gravitational Waveform Models

There are many different waveform models. The non—-exhaustive
list includes

e IMPRPhenomD, IMPRPhenomXPHm, IMPRPhenomTPHM
and many more derived models!
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Gravitational Waveform Models

What is important to us, is what these models have in common
and what distinguishes them:

* Waveform models are essential tools for the detection of GWs
and for parameter estimation of coalescing binary systems
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Gravitational Waveform Models

» Extrinsic parameters: Luminosity distance from source
3 parameters determining the orientation
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Gravitational Waveform Models

e Examples:
a) Effective One Body models assume a small mass—ratio of
the binary

b) Many of the older model neglect the so—called GW memory
effect
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Gravitational Waveform Models

* Each model needs input from numerical relativity (NR) for the
merger phase. But NR simulations are expensive
— Can only cover finitely many points in parameter space
— Each model needs to interpolate between NR data points
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Gravitational Waveform Models

e Each approximation technique introduces errors. These errors
can propagate through the waveform
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Gravitational Waveform Models

Given that waveform models play such a crucial role in detecting
GW events and extracting information from the signal, we have to
ask some crucial questions:
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Gravitational Waveform Models

e Can we test which model makes the smallest error and provides
the best approximation?
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Gravitational Waveform Models

{Yes! We can use the so—called Balance Laws! ]
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The Need for Testing Waveform Models

This is a recent idea (2019) based on arXiv:1906.00913

Compact binary coalescences: Constraints on waveforms
Abhay Ashtekar,* Tommaso De Lorenzo,! and Neev Kheral

Institute for Gravitation and the Cosmos & Physics Department,
Penn State, Uniwversity Park, PA 16802, U.S.A.
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Balance Laws: The Basic Idea

The idea behind the balance law approach is simple:

e This balancing of energies allows us to test and compare
different models
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Mechanical Balance Laws

PHILOSOPHICAL
TRANSACTIONS A

royalsocietypublishing.org/journal/rsta
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Balance Laws as Test of
Gravitational Waveforms

Lavinia Heisenberg'

Nnstitute for Theoretical Physics, Philosophenweg 16,
69120 Heidelberg, Germany

Gravitational waveforms play a crucial role in
comparing observed signals to theoretical predictions.
However, obtaining accurate analytical waveforms
directly from general relativity remains challenging.
Existing methods involve a complex blend of post-
Newtonian theory, effective-one-body formalism,
numerical relativity, and interpolation, introducing
systematic errors. As gravitational wave astronomy
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Mechanical Balance Laws

PHILOSOPHICAL Balance Laws as Test of
TRANSACTIONS A o
Gravitational Waveforms

royalsocietypublishing.org/journal/rsta Lavinia Heisenberg'

@ lInstitute for Theoretical Physics, Philosophenweg 16,

A 69120 Heidelberg, German
ResearCh fe) CrossMark it Y

Gravitational waveforms play a crucial role in
Article submitted to journal comparing observed signals to theoretical predictions.
However, obtaining accurate analytical waveforms
directly from general relativity remains challenging.
Subject Areas: Existing methods involve a complex blend of post-
Newtonian theory, effective-one-body formalism,
numerical relativity, and interpolation, introducing
systematic errors. As gravitational wave astronomy

Gravitational Wave Physics,
Cosmology, Particle Physics
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Mechanical Balance Laws

Consider a (relativistic or non—relativistic) dissipative mechanical
system

- ™

@
%
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Mechanical Balance Laws

Consider a (relativistic or non—relativistic) dissipative mechanical
system

~

@
o’

. J
Boundary of system
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Mechanical Balance Laws

Consider a (relativistic or non—relativistic) dissipative mechanical
system

&

@
0"

Energy in—flux |
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Mechanical Balance Laws

Consider a (relativistic or non—relativistic) dissipative mechanical
system

Energy out—flux
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Mechanical Balance Laws

Energy in system not conserved!

!

But total in/out flux of energy has
to balance total gain/loss of
energy in the system!
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Mechanical Balance Laws

Then one can prove that

'ffma\ ()[,
Foinal — Liinitial = — / (7 di

Linitial x
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Mechanical Balance Laws

tfinal (‘)L
Efinal - Einitial = _/ . dt :[Em Eout]
t

initial

Total energy in/out
flux through boundary
of system
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Mechanical Balance Laws

The strategy is as follows:

2. Make simplifying assumptions and / or approximate equations
and / or solve numerically if they are too difficult to solve
analytically
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Example: Rolling Ball with Friction

Consider a ball rolling down a half—pipe with friction
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Example: Rolling Ball with Friction

Friction term

(6(t) —l--l— 9 sinf(t) =0

Pirsa: 23100017 Page 60/94



You are viewing Lavinia Helsenberg's screen

Example: Rolling Ball with Friction

Non-linear term

(6(t) + g 0(t) +: 0
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Example: Rolling Ball with Friction

B(t)=e 2atp {HU cos (t \/1-’[ \/|1 - %g‘u2 ?I) + (w,, + %gp()“) ﬁm sin (t \/T-_’ \/|1 - %‘q,u'z r|)}
VIi-tou
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Example: Rolling Ball with Friction

Fixed values:
m, [, g, T

wo, tinitial, Cfinal

Variable:

e
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Example: Rolling Ball with Friction

Approximation
good for small
angles
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Example: Rolling Ball with Friction

Fixed values:
m, ft, g, T

Linitial; final

Changed value:

Wy

Variable:

T
0, € [U, 2]
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From Mechanical to GR Balance Laws

PHILOSOPHICAL
TRANSACTIONS A

royalsocietypublishing.org/journal/rsta
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Balance Laws as Test of
Gravitational Waveforms

Lavinia Hemenberg'

lInstitute for Theoretical Physics, Philosophenweg 16,
69120 Heidelberg, Germany

Gravitational waveforms play a crucial role in
comparing observed signals to theoretical predictions.
However, obtaining accurate analytical waveforms
directly from general relativity remains challenging.
Existing methods involve a complex blend of post-
Newtonian theory, effective-one-body formalism,
numerical relativity, and interpolation, introducing
systematic errors. As gravitational wave astronomy
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From Mechanical to GR Balance Laws

* To develop balance laws for coalescing binary systems, we
need to understand GWs in the full, non-linear theory
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From Mechanical to GR Balance Laws

e A detailed introduction into this subject is given in

Gravitational Waves in Full, Non-Linear General Relativity

Fabio D’Ambrosio™ ', Shaun D. B. Fell' 2, Lavinia Heisenberg" ', David Maibach® ¢, Stefan
Zentarra' ', and Jann Zosso!"'

'Institute for Theoretical Physics, ETH Zurich, Wolfgang-Pauli-Strasse 27, 8093 Zurich, Switzerland
YInstitut fur Theoretische Physik, Philosophenweg 16, 69120 Heidelberg, Germany
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Gravitational Balance Laws

Due to the emission of GWSs, there is an out—flux of energy
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Gravitational Balance Laws

Due to the emission of GWSs, there is an out—flux of energy
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Gravitational Balance Laws

The signal is measured by interferometers which are “infinitely” far
away
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Gravitational Balance Laws

The signal allows us to determine
 The kick velocity; Uik
* The total mass of the binary system; Myinary := M;o

e The mass of the remnant; Miemnant := M+

3 (

@ ®
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Gravitational Balance Laws

M. 1 D2c? [ /.. .
remnant 5 - A’{binary I I / (hi -+ hi) dt

. 3 P
Y (Viciek ) (1 — Hhisk 1) S

=4+

Re [62 (hy — 7h><)]

t—=—o0

lDL (?4
2 G

J
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Gravitational Balance Laws

Observe the close resemblance with the mechanical balance laws

[Efinal — Einitial}

A'Iremnant
AA'Ibim
ry

: B 3
v (vkick )3 (1 — Yick L)

C

Energy difference between initial
and final state of system
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Gravitational Balance Laws

Observe the close resemblance with the mechanical balance laws

*Lfinal oL
= / —dt
t-initla at

1D} [ /., .
{4 Ef/ (hi+hi)dt]

Total energy lost by system
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The GW Memory Effect

Re {82 (hy —th )J

L= X

1Dt
2 G

hy  in the distant future minus A _y in the distant past
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The GW Memory Effect

In the distant past, before any GW has been emitted, one expects
h =0

"x‘f*—x
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The GW Memory Effect

t l

Re [0% (hy —ihy)]

L X

1 D ¢
2 G

Similarly, in the distant future after the GW has long passed, one

expects
hy xl, — ()
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The GW Memory Effect

This difference has a clear interpretation in terms of a ring of test
masses:

* However: GR predicts that in general i » #0 after the
passage of the wave

Pirsa: 23100017 Page 79/94



You are viewing Lavinia Helsenberg's screen

The GW Memory Effect

The GW memory effect is the prediction that GWs lead to a
permanent displacement of test masses
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The GW Memory Effect

h,
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The GW Memory Effect

h,

A \/\/\/ﬂ an\’\’ Qi

GWs leave
behind a
permanent
deformation
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Simple Waveform Model

e arXiv:1810.06160

A Complete Analytic Gravitational Wave Model for

Undergraduates

Dillon Buskirk [*] and Maria C. Babiuc Hamilton [*]
Department of Physics, Marshall University, Huntington, WV 25755, USA
Abstract
Gravitational waves are produced by orbiting massive binary objects, such as black holes and
neutron stars, and propagate as ripples in the very fabric of spacetime. As the waves carry off orbital
energy, the two bodies spiral into each other and eventually merge. They are described by Einstein’s
equations of General Relativity. For the early phase of the orbit, called the inspiral, Einstein

equations can be linearized and solved through analytical approximations, while for the late phase,
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Simple Waveform Model

Let us consider a simple model assuming:

 time dependent orbital frequency w(t)
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Gravitational Waveform

Inspiral phase
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Gravitational Waveform

RMTE (L) = A(t) 7" Prmers®)

Numerical

A numerical fit to NR simulations. o
Relativity
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Gravitational Waveform

The inspiral and merger-bringdown waveforms are matched and
merged into a single, analytical waveform model.

Strain A, [10
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Gravitational Balance Laws

A”'{rem nant ) )i ¢ > ) ;9 )
- B INEE A’{binary = ( — h,+ -+ hx dt
7 (vkick)? (1 — Tk, ;f:) | J—oo

1 1£)|_C4
+ =
2 G

t=+4o0

Re [62 (hy —1 hx)]
t=—o0
v

(32 (A{remnant — Ajﬂ
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Gravitational Balance Laws

7~

No memory!
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Gravitational Balance Laws

ﬂ"{remn n 1 D2 73 o 7 - ;-
= 5~ Moinary | = = - tj / (h,i + hf() dt
Y (Viciek ) (1 — Shik -;i:) T

t=+4o00

1D c* .
L Re [0% (hy —ihy)]

NPE

t=—0o0

|

02 (33 +oo ) .
[(.2 (Mrermnant = M) = ==L / (h,i +hi) dt]

— 00
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Gravitational Balance Laws

D‘Z ‘7_3 +oo .
(-"2 (A{remnant - A’f) = 4L(§ / (h?’r + hi) dt

— o0

Radiated Power [s7 M . ]
A

300

M. h:]'H-*_’.l\‘.U (

-

= Time s
005
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Gravitational Balance Laws

D2¢e3 [T . .
CQ (A{remnant - M) = - 4LG, ' / (hi -+ hi) dt

Radiated Power [s~"M..¢]

A
300

Fh) dt = 5.03M. ¢

-
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Gravitational Balance Laws

D2 (?3 +oo .
CQ (A’{remnant — A[) = 4LG, ' / (hi + hi) dt

Radiated Power [s7 M ¢ ._
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Y
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Summary

Using Balance Laws we can

* Determine which model performs better in which region of
parameter space
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