Title: Status, perspective and three challenges in the asymptotic-safety paradigm for quantum gravity - VIRTUAL

Speakers: Astrid Eichhorn

Collection: Puzzles in the Quantum Gravity Landscape: viewpoints from different approaches
Date: October 24, 2023-9:00 AM
URL: https://pirsa.org/23100005
Abstract: In my talk, I'll review the key idea underlying asymptotically safe quantum gravity, before giving an overview of the current status and open questions. I'll then spotlight three challenges. The first challenge is how to test quantum gravity and I'll advocate that by linking quantum gravity to particle physics and cosmology, we can probe quantum gravity at all scales. The second challenge is how to connect to other ideas about quantum spacetime and I'll discuss effective asymptotic safety as a way to link to, e.g., string theory. The third challenge is the status of global symmetries and I'll discuss what we know about the preservation of global symmetries in asymptotic safety and what this implies for a broader perspective on the question.

The presenter will be joining via Zoom for this talk.

Status, future perspectives and three challenges in the asymptoticsafety paradigm for quantum gravity

Puzzles in the quantum gravity landscape, Perimeter Institute, October 24, 2023

Astrid Eichhorn, University of Southern Denmark

```
VILLUM FONDEN
```


SDU

Asymptotically safe gravity: Key concepts

Key assumptions:

- Metric* carries the fundamental degrees of freedom
- Path integral has a finite number of free parameters
$\int \mathscr{D} g_{\mu \nu} e^{i S}$
$S=S_{\text {Einstein-Hilbert }}=\frac{1}{16 \pi G_{N}} \int d^{4} x \sqrt{-g}(R-2 \Lambda)$

Problem:
perturbative non-renormalizabilie\%,
\rightarrow breakdown of predictivity

Solution:
Quantum scale symmetry
\rightarrow relations between the couplings restore predictivity

* vielbein [Harst, Reuter '12], metric+connection [Harst, Reuter '14]
\Rightarrow quantum scale symmetry: Reuter fixed point
[Weinberg '76; Reuter '96; Dou, Percacci '97; Souma '99; Lauscher, Reuter '01; Reuter, Saueressig '01...]

Asymptotically safe gravity: Status and open challenges*

Traffic light

> | Unsolved problem |
| :--- |

Solution has been proposed

Several studies supporting solution/result exist

Numerous studies supporting solution/result exist
(Largely) solved problem/ Answered question

Asymptotically safe gravity: Status and open challenges*

* "Critical reflections on asymptotically safe gravity", Bonanno, AE, Gies, Pawlowski, Percacci, Reuter, Saueressig, Vacca '20

Asymptotically safe gravity: Status and open challenges*

[^0]Asymptotically safe gravity: Status and open challenges*

Evidence for asymptotically safe fixed point recent reviews: Saueressig '23; Pawlowski, Reichert '23

Traffic light

Unsolved problem

Solution has been proposed

Several studies supporting solution/result exist

Numerous studies supporting solution/result exist
(Largely) solved problem/ Answered question

Asymptotically safe gravity: Status and open challenges*

* "Critical reflections on asymptotically safe gravity", Bonanno, AE, Gies, Pawlowski, Percacci, Reuter, Saueressig, Vacca '20

Asymptotically safe gravity: Status and open challenges*

Evidence for asymptotically safe fixed point

 recent reviews: Saueressig '23; Pawlowski, Reichert '23Evidence for asymptotically safe fixed point with Standard Model matter
recent reviews: AE, Schiffer '22, AE '22

Traffic light

Unsolved problem

Solution has been proposed

Several studies supporting solution/result exist

Numerous studies supporting solution/result exist
(Largely) solved problem/ Answered question

Asymptotically safe gravity: Status and open challenges*

* "Critical reflections on asymptotically safe gravity", Bonanno, AE, Gies, Pawlowski, Percacci, Reuter, Saueressig, Vacca '20

Asymptotically safe gravity: Status and open challenges*

*"Critical reflections on asymptotically safe gravity", Bonanno, AE, Gies, Pawlowski, Percacci, Reuter, Saueressig, Vacca '20

Asymptotically safe gravity: Status and open challenges*

recent reviews: Saueressig '23; Pawlowski, Reichert '23
Evidence for asymptotically safe fixed point with Standard Model matter
recent reviews: AE, Schiffer '22, AE '22
Properties and predictivity of the fixed point
Classical gravity in the IR
Viable phenomenology in particle physics
Resolution of curvature singularities
Connection to other QG approaches

Traffic light

Unsolved problem

Solution has been proposed

Several studies supporting solution/result exist

Numerous studies supporting solution/result exist
(Largely) solved problem/ Answered question

[^1]
Asymptotically safe gravity: Status and open challenges*

* "Critical reflections on asymptotically safe gravity", Bonanno, AE, Gies, Pawlowski, Percacci, Reuter, Saueressig, Vacca '20

Asymptotically safe gravity: Status and open challenges*

recent reviews: Saueressig '23; Pawlowski, Reichert '23
Evidence for asymptotically safe fixed point with Standard Model matter
recent reviews: AE, Schiffer '22, AE '22
Properties and predictivity of the fixed point
Classical gravity in the IR
Viable phenomenology in particle physics
Resolution of curvature singularities
Connection to other QG approaches
Propagating degrees of freedom \& stability

Traffic light

Unsolved problem

Solution has been proposed

Several studies supporting solution/result exist

Numerous studies supporting solution/result exist
(Largely) solved problem/ Answered question

[^2]
Asymptotically safe gravity: Status and open challenges*

* "Critical reflections on asymptotically safe gravity", Bonanno, AE, Gies, Pawlowski, Percacci, Reuter, Saueressig, Vacca '20

Asymptotically safe gravity: Status and open challenges*

recent reviews: Saueressig '23; Pawlowski, Reichert '23
Evidence for asymptotically safe fixed point with Standard Model matter recent reviews: AE, Schiffer '22, AE '22

Properties and predictivity of the fixed point
Classical gravity in the IR
Viable phenomenology in particle physics
Resolution of curvature singularities
Connection to other QG approaches
Propagating degrees of freedom \& stability
Lorentzian signature

Traffic light

Several studies supporting solution/result exist

Numerous studies supporting solution/result exist
(Largely) solved problem/ Answered question

[^3]Asymptotically safe gravity: Status and open challenges*
Evidence for asymptotically safe fixed point recent reviews: Saueressig '23; Pawlowski, Reichert '23

Evidence for asymptotically safe fixed point with Standard Model matter recent reviews: AE, Schiffer '22, AE '22

Properties and predictivity of the fixed point
Classical gravity in the IR
Viable phenomenology in particle physics
Resolution of curvature singularities
Connection to other QG approaches
Propagating degrees of freedom \& stability
Lorentzian signature
Three challenges:

1) Phenomenology: How to test asymptotically safe quantum gravity?
2) Status of global symmetries
3) Connection to other quantum gravity approaches
[^4]Challenge 1: How to test (asymptotically safe) quantum gravity?

Excluding models (swampland-ish ideas): when a given model in particle physics/cosmology is incompatible with a UV completion
Constraining models: when the parameters in a model (the coupling constants) are constrained by the UV completion

Why should the low-energy theory be sensitive to the high-energy theory? Don't we lose microscopic information,
when we zoom out to construct the effective theory?

universality of IR theory: microscopic information is "washed out" by RG flow

Challenge 1: How to test (asymptotically safe) quantum gravity?

Excluding models (swampland-ish ideas): when a given model in particle physics/cosmology is incompatible with a UV completion Constraining models: when the parameters in a model (the coupling constants) are constrained by the UV completion

Logarithmic running as a lever arm

Asymptotically safe Standard Model with gravity

Predictions for BSM physics: spotlight on dark matter

ALP-photon coupling vanishes

[de Brito, AE, Lino dos Santos '21]

- Higgs portal to single dark scalar excluded
[AE, Hamada, Lumma, Yamada '17]
- Higgs portal to dark scalar with dark gauge charge excluded [de Brito, AE, Frandsen, Rosenlyst, Thing, Vieira, to appear]
- Higgs portal to extended dark sectors constrained
[Reichert, Smirnov '19; Hamada, Tsumura, Yamada '20; AE, Pauly '20; Kowalska, Sessolo '20]

Predictions for BSM physics: spotlight on dark matter

- ALP-photon coupling vanishes

[de Brito, AE, Lino dos Santos '21]

- Higgs portal to single dark scalar excluded [AE, Hamada, Lumma, Yamada '17]
- Higgs portal to dark scalar with dark gauge charge excluded [de Brito, AE, Frandsen, Rosenlyst, Thing, Vieira, to appear]
- Higgs portal to extended dark sectors constrained
[Reichert, Smirnov '19; Hamada, Tsumura, Yamada '20; AE, Pauly '20; Kowalska, Sessolo '20]

Many phenomenological models of dark matter use global symmetries to stabilize dark-matter candidates
\rightarrow are those automatically excluded when quantum gravity is considered?

Challenge 2: What is the status of global symmetries?

No-global symmetries conjecture:

1) Black-hole spacetimes violate conservation of global charges
global charge
black hole undergoes complete Hawking evaporation (no remnants)
2) Gravity-matter path integral contains black-hole configurations

$$
\Rightarrow \text { effective theory for matter has no conserved global charges }
$$

$$
\int \mathscr{D} g_{\mu \nu} \mathscr{D} \bar{\psi} \mathscr{D} \psi \ldots e^{i S}=\int \mathscr{D} \bar{\psi} \mathscr{D} \psi \ldots e^{i S_{\mathrm{eff}}}
$$

But: explicit calculations in asymptotic safety:
No interactions are generated by gravity which violate global symmetries of matter fields

[AE '12; AE, Held '17;

de Brito, AE, Lino dos Santos '20,
Laporte, Pereira, Saueressig, Wang '21,...
(full list in review AE, Schiffer '22]

> Possibility 1: black-hole configurations not adequately accounted for in functional RG (due to Euclidean signature?)

Possibility 2: remnants
asymptotic-safety inspired black holes have vanishing temperature at Planckian mass [Bonanno, Reuter '06]

Planckian mass [Bonanno, Reuter '06]
Possibility 3: black holes dynamically suppressed in path integral
$\int \mathscr{D} g_{\mu \nu} e^{i S}:$ destructive interference for configurations with $S \rightarrow \infty$
$S=\ldots+\int d^{4} x \sqrt{-g} R_{\mu \nu \lambda \lambda} R^{\mu \nu \kappa \lambda} \rightarrow \infty$ for singular black holes
[Borissova, AE '20; Borisssova '23]

Challenge 2: What is the status of global symmetries?

No-global symmetries conjecture:

1) Black-hole spacetimes violate conservation of global charges

2) Gravity-matter path integral contains black-hole configurations \Rightarrow effective theory for matter has no conserved global charges

$$
\int \mathscr{D} g_{\mu \nu} \mathscr{D} \bar{\psi} \mathscr{D} \psi \ldots e^{i S}=\int \mathscr{D} \bar{\psi} \mathscr{D} \psi \ldots e^{i S_{\mathrm{eff}}}
$$

But: explicit calculations in asymptotic safety:
No interactions are generated by gravity which violate global symmetries of matter fields

Possibility 1: black-hole configurations not adequately
accounted for in functional RG (due to Euclidean signature?)
Possibility 2: remnants
asymptotic-safety inspired black holes have vanishing temperature at Planckian mass [Bonanno, Reuter '06]

Possibility 3: black holes dynamically suppressed in path integral $\mathscr{D} g_{\omega} e^{i S}$: destructive interference for configurations with $S \rightarrow \infty$ de Brito, AE, Lino dos Santos '20,
Laporte, Pereira, Saueressig, Wang '21,
No-global symmetries conjecture is part of the string-inspired swampland program.
\rightarrow What is the relation of the asymptotically (un)safe swampland to the stringy swampland?
(full list in review AE, Schiffer '22]

Challenge 3: What is the relation to other ideas about quantum spacetime?

Asymptotically (un)safe swampland and stringy swampland:

```
(Refined) de Sitter conjecture:
                                    [Obied, Ooguri, Spodyneiko, Vafa '18]
\(\nabla V \geq \frac{c}{M_{\text {Planck }}} V \quad\) for scalar potential \(V\)
\(\Rightarrow\) no deSitter vacua
Asymptotically safe view
- Cosmological constant (of correct size) compatible
                                    [Reuter, Saueressig '01]
- Dynamical dark energy?
Not everything goes! Example: simplest Horndeski model excluded
                                    [AE, Lino dos Santos, Wagner '23]
```

```
Weak gravity conjecture:
e\geqm}\sqrt{}{8\pi\mp@subsup{G}{N}{}
Asymptotically safe view: Basile, Platania '21]
- requires }\mp@subsup{e}{*}{}>0\mathrm{ and constrains fixed-point properties
```

Challenge 3: What is the relation to other ideas about quantum spacetime?

Asymptotically (un)safe swampland and stringy swampland:

(Refined) de Sitter conjecture:

[Obied, Ooguri, Spodyneiko, Vafa '18]
$\nabla V \geq \frac{c}{M_{\text {Planck }}} V \quad$ for scalar potential V
\Rightarrow no deSitter vacua
Asymptotically safe view:

- Cosmological constant (of correct size) compatible
[Reuter. Saueressig '01]
- Dynamical dark energy?

Not everything goes! Example: simplest Horndeski model excluded
[AE, Lino dos Santos, Wagner '23]

Weak gravity conjecture

[Arkani-Hamed, Motl, Nicolis, Vafa 06]
Asymptotically safe view: $\begin{aligned} & \text { [de Allis. AE. Held. } \\ & \text { Basile, Platania } 21]\end{aligned}$

- requires $e_{*}>0$ and constrains fixed-point properties

From string theory through asymptotic safety
to the Standard Model?
[de Awis, AE, Held. Pawlowski. Schififer, Verstecgen ' 19 : Basile. Platania '21]

Challenge 3 : What is the relation to other ideas about quantum spacetime?

Generalization: effective vs. fundamental asymptotic safety
ω^{1}

Asymptotically safe gravity: Status and open challenges*

Evidence for asymptotically safe fixed point with Standard Model matter
recent reviews: AE, Schiffer '22, AE '22
Properties and predictivity of the fixed point
Classical gravity in the IR
Viable phenomenology in particle physics
Resolution of curvature singularities
Connection to other QG approaches
Propagating degrees of freedom \& stability
Lorentzian signature

Three challenges:
1) Phenomenology: How to test asymptotically safe quantum gravity?
2) Status of global symmetries
3) Connection to other quantum gravity approaches

Phenomenological status with matter:

- upper bounds on subset of SM couplings have large systematic uncertainties
- first constraints on/exclusions of BSM particle physics (e.g., dark matter)
- ongoing work: delineate the asymptotically safe landscape

Global symmetries:

- intact in functional RG calculations
- related to absence of black-hole spacetimes in the path integral?

Relation to other approaches:

- first studies of relation to string-inspired swampland conjectures
- proposal of effective asymptotic safety

[^5]
[^0]: * "Critical reflections on asymptotically safe gravity", Bonanno, AE, Gies, Pawlowski, Percacci, Reuter, Saueressig, Vacca '20

[^1]: * "Critical reflections on asymptotically safe gravity", Bonanno, AE, Gies, Pawlowski, Percacci, Reuter, Saueressig, Vacca '20

[^2]: * "Critical reflections on asymptotically safe gravity", Bonanno, AE, Gies, Pawlowski, Percacci, Reuter, Saueressig, Vacca '20

[^3]: * "Critical reflections on asymptotically safe gravity", Bonanno, AE, Gies, Pawlowski, Percacci, Reuter, Saueressig, Vacca '20

[^4]: * "Critical reflections on asymptotically safe gravity", Bonanno, AE, Gies, Pawlowski, Percacci, Reuter, Saueressig, Vacca '20

[^5]: * "Critical reflections on asymptotically safe gravity", Bonanno, AE, Gies, Pawlowski, Percacci, Reuter, Saueressig, Vacca '20

