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Abstract: One hundred years after Heisenberg's Uncertainty Principle, the question of how to make simultaneous measurements of honcommuting
observables lingers. | will survey one hundred years of measurement theory, which brings us to the point where we can formulate how to measure
any set observables weakly and simultaneously and then concatenate such measurements continuously to determine what is a strong measurement of
the same observables. The description of the measurements is independent of quantum states---this we call instrument autonomy---and even
independent of Hilbert space---this we call the universal Instrument Manifold Program. But what space, if not Hilbert space? It's awhole new world:
the Kraus operators of an instrument live in a Lie-group manifold generated by the measured observables themselves. | will describe measuring
position and momentum and measuring the three components of angular momentum, special cases where the instrument approaches asymptotically
a phase-space boundary of the instrumental Lie-group manifold populated by coherent states; these special universal instruments structure any
Hilbert space in which they are represented. In contrast, for almost all sets of observables other than these special cases, the universal instrument
descends into chaos ... literally. This work was done with Christopher S. Jackson, whose genius and vision inform every aspect.

Zoom link https://pitp.zoom.us/j/94135518267?pwd=T2JOL 21V aEcrY 05K eG1SY TV'Y dHhxdz09
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One Hundred Years After Heisenberg:
Discovering the World of Simultaneous
Measurements of Noncommuting Observables
Carlton M. Caves

Center for Quantum Information and Control
University of New Mexico

“Well, why not say that all the things which should be handled in theory
are just those things which we also can hope to observe somehow.” ...
| remember that when | first saw Einstein | had a talk with him about
this. ... [H]e said, ~"That may be so, but still it's the wrong principle in
philosophy." And he explained that it is the theory finally which
decides what can be observed and what can not and, therefore, one

cannot before the theory, know what is observable and what not.
Werner Heisenberg, recalling a conversation with Einstein in 1926,
interviewed by Thomas S. Kuhn, February 15, 1963

This work was carried out with Christopher S. Jackson, 2
whose genius and vision inform every aspect.
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A brief glirﬁse into
a whole new world

Moo Stack and the Villians of Ure §#@
Eshaness, Shetland
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A brief glimpse intfo a whole new world

Examples
Any set of Hermitian observables, Single observable X
s Position ¢ and momentum P
X ={X1,...,Xn}, Three components of angular momentum, J;, Jy,

and .J,

can be measured (differential) weakly
Two components of angular momentum, J, and J,

and simultaneously in an infinites- _ _ e
to commutators. P?) and K, = —3(QP + PQ)

Concatenating these differential weak measurements continuously
should tell one what it means to measure the same observables
strongly and simultaneously. And so it does, except that it also
leads to ...

A magic carpet ride

Into a whole new world.

A new, fantastic point of view,

A thrilling chase,

A wondrous space,

And now we bring this whole new world to you.
Big-time apologies to Aladdin
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A brief glimpse intfo a whole new world

A magic carpet ride
Into a whole new world.
A new, fantastic point of view,
A thrilling chase,
A wondrous space,
And now we bring this whole new world to you.
Big-time apologies to Aladdin

The details in three papers
C. S. Jackson and C. M. Caves

“Simultaneous measurements of noncommuting observables: Positive transformations and
instrumental Lie groups,” Entropy 25, 1254 (2023). (a.k.a. 1-2-3),
https://doi.org/10.3390/e25091254

“Simultaneous momentum and position measurement and the instrumental Weyl-
Heisenberg group,” Entropy 25, 1221 (2023). (a.k.a. SPQM),
https://doi.org/10.3390/e25081221

“How to perform the coherent measurement of a curved phase space by continuous
isotropic measurement. l. Spin and the Kraus-operator geometry of SL(2,C),” Quantum 7,
1085 (2023), arXiv:2107.12396v3. (a.k.a ISM), https://doi.org/10.22331/¢-2023-08-16-1085

plus

C. S. Jackson, “The photodetector, the heterodyne instrument, and the principle of
instrument autonomy,” arXiv:2210.11100.
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A brief glimpse info a whole new world

Any set of observables can be measured simultaneously if measured differential
weakly. Commutators can be disregarded for differential weak measurements.
Differential weak measurements define a fundamental incremental Kraus operator, a
differential positive transformation, which is the positive-operator analogue of
infinitesimal unitary transformations and equally fundamental.

Instrument (Kraus-operator) evolution is autonomous, temporal, and stochastic.
Instrument Manifold Program. The instrument evolves on the manifold of an
instrumental Lie group, which is generated by the measured observables.

Motion of the Kraus operators on the instrumental Lie group is described using the
three faces of the stochastic trinity: Wiener path integrals, stochastic differential
equations, and a diffusion equation for a Kraus-operator distribution function.
Universal instruments. The instrumental Lie group is generated universally, detached
from and independent of Hilbert space.

Principal and chaotic instruments. Principal instruments (e.g., position and momentum,
three components of spin) have a low-dimensional universal instrumental group: they
limit to coherent-state POVMs—this is collapse within irrep—and thus define a phase
space, which is connected to the identity across a symmetric space. Chaotic
instruments (e.g., two components of spin, two squeezing symplectic generators) have
an infinite-dimensional universal instrumental group: these are generic, evolve
chaotically, and have no limiting strong measurement.
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Central California
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100 years of quantum measurements.
The founding (1925-32)

Matrix mechanics, commutators, and uncertainty principle

Wave mechanics (the Schrédinger equation)

Linear algebra of square-integrable functions von Neumann’s synthesis: inner products

Dirac-Jordan transformation theory and Hilbert space, unitary transformations

Born probability rule (Hamiltonian dynamics), and measurements
of Hermitian observables.

3, i = {31} = (&I Pj|9)

Born rule
[Y) ——— e—iHt/h X Pily)/\/Di = 13)
unitary Collapse
Hamiltonian von Neumann measurement
dynamics of Hermitian observable

X = ZAjlﬁ(jl - Z)\jpff
A/ J

Temporal: Autonomous:
(continuous) process.  independent of state. Physics by fiat:
- no simultaneous
Temporal Autonomous  Transformation Group Esairananta of
No Yes Yes No noncommuting
Drop |¢) from description. Sl
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100 years of quantum measurements.
The desert (1932-60)

Quantum measurement theory withered under the desert sun, whereas the unitary side of
guantum mechanics thrived with constant and well-deserved nurturing.

Everybody used the Born rule, though how to interpret its probabilities remains a source of
discussion and debate today. Nobody used and next to nobody bought von Neumann’s
collapse, because there were no repeated measurements on the same system.

All measurements were actually von Neumann’s indirect measurements and analyzed using
the Born rule without using von Neumann measurements of Hermitian observables.

Mathematical developments
Unitary Lie groups: symmetry groups and representation theory
Functional and harmonic analysis
Functional (path) integration
Transformation groups
Differential geometry of complex Lie groups
Measures and probability theory, stochastic processes, and stochastic calculus

First three and a bit of the fourth fell on fertile soil in
the unitary sector of quantum mechanics and
quantum field theory.

None of this got into (or was needed in) the
desiccated quantum measurement theory.

We use all these developments.
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100 years of quantum measurements.
Generalized measurement theory (1960-85)

Overcomplete-basis measurements (measurements of
noncommuting observables, coherent states, heterodyne)

Hint of repeated measurements

Wigner
Generalized measurement theory. Taking advantage of =~ Davies
von Neumann’s indirect measurements Ludwig
Kraus
- Born rule ;
0) L J, pj = trs(K|[wY (| K]) = trs(Ejly) {v])
U
|9) GlUN0) ) //P; = Kjlb) /\/P;

“Gentler” collapse

Js pj = (Y| Ejle)

|
1) K; Kj|¥)/\/pj
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100 years of quantum measurements.
Generalized measurement theory (1960-85)

Overcomplete-basis measurements (measurements of
noncommuting observables, coherent states, heterodyne)

Hint of repeated measurements

Wigner
Generalized measurement theory. Taking advantage of ~ Davies
von Neumann’s indirect measurements Ludwig
Kraus
- Born rule ;
0) ) J, pj = trs(K|wY (| K]) = trs(Bjly) (1))
U
|9) GlUN0) ) //P; = Kjlb) /\/P;

“Gentler” collapse
(Kraus operator) = K; = (j|U|0)
(POVM element) = E; = K[K; > 0

jop= WIB ) (Completeness): m=1 |

Positive

|
1) K; K;|¥)/\/pj
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100 years of quantum measurements.
Generalized measurement theory (1960-85)

Concatenating measurements 0) U— — k
0) —— =
U
1Y) —— U Ky Kjl) [ /Pk;
, K Kly) _ Ky K )
= |
%) K; K K K1)/ \/Pr;
Temporal Autonomous  Transformation Group
A bit i Yes No

To normalize or not to normalize?

J k
| |
—'d Ky —— KiK;
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100 years of quantum measurements.
Continuous weak measurements (1980-2010)

We are interested in differential weak measurements: D«':!Vit%_S . DOherty_

Kraus operators close to the identity. Barchielli Mabuchi
Carmichael Jacobs

Differential weak measurement of X in increment df  Milburn Brun
Wiseman Steck

1 A Goetsch/Graham
7)) = \/ e 9/20
(q]0) s
meter [0) — ] Q) g, dp(q)
e—iH dt/h
) —— Vdg (gle=H%/M|0) [4) /+/dp(q)

Hdt=2VrdtoP ® X dW = ¢q\/dt/o is a Wiener outcome increment.

Controlled displacement ., (1) = zero-mean Gaussian with (dW?2) = dt
of meter position @ by X
Kraus operator

\ dg <q|6—iHrlt/h‘O> = d,LL(dW) @X\/Efi'['T"—X2Hrii

= Lyx(dW)

@y dp(q) = du(dW) (WL x (dW) Lx (dW)]w)

) —— Lx(dW) —— Lx(dW)|y)/v/ (Y| Lx(dW )T Lx (dW)|)
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100 years of quantum measurements.
Continuous weak measurements (1980-2010)

Concatenating

Continuous, differential weak measurement of X over finite time T.

d VVD dt d‘W1 dt d Hf T—dt
|| |
%) 4{ Lx(dWoa) i— Lx(dW1a) % 00 o Lx [dt’V[D,T)”%D)/\/(MLX [dWio,r)]T Lx [dW o )] [4)
Lx(dW;) = & = XVrdW—X?rdt 8: = X+/k dW;— X2k dt = (forward generator)
T/d}_',—l T—dt
L [dW[O;T)] =T H Lx(dWhiat) = TeXD( / i = 2 dt)
k=0 4
Temporal Autonomous  Transformation Group
Yes ? Yes 2

Normalizing at each increment gives a stochastic master equation
for an evolving state. Not normalizing (sometimes called a linear
quantum trajectory) gives autonomous instrument evolution.
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100 years of quantum measurements.
Continuous weak measurements (1980-2010)
Concatenating
Continuous, differential weak measurement of X over finite time T.

Instrument evolution

dWoat dWiat dWr_a
H H . H
4{ Lx(dWoat) — Lx(dW1a:) }* — Lx(dWr_a) % Lx[dWio ] = Lt
Lx(dW;) = b = X vrdWi—Xtrdt 8¢ = X+/k dW;— X2k dt = (forward generator)
T/dt—1 T—dt
LdWpn] =T ] Lx(dWia) = Texp< / XvkdW, — Xk dt)
k=0 20
Temporal Autonomous  Transformation Group

Yes Yes Yes Yes
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100 years of quantum measurements.
Continuous weak measurements (1980-2010)
Concatenating
Continuous, differential weak measurement of X over finite time T.

Instrument evolution

dWoas dWiq dWr_q
4{ Lx(dWoat) — Lx(dW1a:) }* — Lx(dWr_a) % Lx[dWo ] = Lt
Lx(dW;) = b = XVrdWi—Xtrdt 8 = X+/k dW;— X2k dt = (forward generator)
T/dt—1 T—dt
LldWon] =T ] Ix(@Wia) = Texp< / XVEdW, — Xk dt)
k=0 <0
Temporal Autonomous  Transformation Group
Yes Yes Yes Yes

Continuous measurements of a single observable are trivial because
everything commutes (time ordering is irrelevant; irreps are 1D). They
limit to a strong measurement that is a von Neumann measurement
(standard collapse between irreps).
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Variegated fairy wren
Oxley Common, Brisbane

Red-backed fairy wren
Oxley Common, Brisbane

R
&

! - -
Instrument manifold
program

Western diamondback rattlesnake
My front yard, Sandia Heights
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Instrument manifold program

dW,
1 Ly (dWy) ——
The incremental Kraus operator for a differential weak measurement of the
observables X = {X3,..., X,}, beginning at time ¢ for an increment dt, is
\/7# = ; e dWi-dW,/2dt T
du(dWy) L;Z(de) = 4/d(dW;) - - - d(dW}]) (2rdi)" e :
where
Lg(dWy) = e, 5 = X - VrdW, — X%k dt = (forward generator)
and

X dW, = ZX#dW{"‘, dW} = (Wiener outcome increment for X,).
[
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Instrument manifold program

AW,
|
— L@ —
The incremental Kraus operator for a differential weak measurement of the
observables X = {X3,..., X,}, beginning at time ¢ for an increment dt, is
= o e—AW-dW,/2dt E—

V(@ Ly(aw) = \/ AW} - AW S XS,

where Commutators can be disregarded

for differential weak measurements.

L(dWy) = e, 8 = X - VrdW, — X%k dt = (forward generator)

and ) ) ) )
Differential weak measurements define a fundamental incremental

Kraus operator, a differential positive transformation, which is
fundamental in the same way as infinitesimal unitary transformations.

X . dW, = ZX#dW{"‘, dW}" = (Wiener outcome increment for X,).
i
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Instrument manifold program

Instrument evolution: “piling up” Kraus operators

dWoar dW1a AWr_ 4,
| H e |
4{ L 3 (dWoat) L3(dWia) — —— Ly (dWr_at) — L[dWjor)] = Ly

v T o2 N e 3 B
Lf(th) = 85’ = gX Vk dW,— X2k dt

The differential positive transformations “pile up” as successive incremental
measurements are performed; at time T the Kraus operator is

T —dt T—dt
Ly = L[dWjo 1)) = T exp (/ &) — Texp( X - VEdW; — X’%dt) ,
0 0

where dW[D;,w) is the Wiener outcome path and 7 denotes a time-ordered
exponential-——commutators do count for finite 7! The measuring instrument
is the collection of these Kraus operators for all Wiener paths (more precisely,
the collection of instrument elements Ly ® L}.).

Instrument evolution is an autonomous, temporal, stochastic process.
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Instrument manifold program

Instrument evolution

dWOdt dﬁfldt dWl‘fdt
| . |
4{ L +(dWoat) Lz(dWhat) — Lg(dWr_a) — L[dWjo 1)) = Lr

- . TSP
LX(th) = 65,, = GX VEdAW,— X2k dt

The quantum circuit becomes a stochastic path
on the instrumental Lie group manifold.

LT —_ L[dW[O,T)}

SPQM ISM

The Kraus operators Ly = L}HT’[U,)* are elements of an instrumental
Lfe group G, which is the group generated by the measured observables,
X = Ngo s\, ANd the quadkatic- torm;, X2 = X« X = DBIE. The
instrument evolves stochastically in the manifold of the mstrumental Lie
group, which is the natural setting for the measurement.

Pirsa: 23090113 Page 21/33



Pirsa: 23090113

Instrument manifold program

The motion of the Kraus operators on the group manifold G is analyzed using the three faces of
the stochastic trinity. The overall quantum operation is given by a Wiener-like path integral of the
measurement record, Ly = L[dWp 1]

Zr = f Dul[dWio 1] LIdWo 1] @ LI[dWio ]

it is the solution of a Lindblad equation in which the measured observables are the Lindblad operators.
The Kraus-operator paths satisfy a stochastic differential equation (SDE),

Maurer-Cartan form (Stratonovich): dL;L;}. ., =8 =X -vkdW — X2k dt,

t+dt/ 2

Modified MC stochastic differential (Itd): dL;L;' — —(de i e

A Kraus-operator distribution function (KOD) is defined by a Wiener path integral,

Dr(L) = / D;_z[di.?’[o_ﬂ] 6(L, L-[dl-i?[o_;,-)]),

where the §-function is defined relative to the Haar measure of G¢. The KOD evolves according to a
Fokker-Planck-Kolmogorov equation (FPKE),

18D(L) 3 5
s = /A[Ia|(E)) . A=X
n ot (DL, z2+

N =

> XX
7
where the underarrows denote right-invariant derivatives,

r(ChX TN B fT
. f ((. L) Fien)] :
h—0 h

XA = 27

h=0

these being the natural vector fields on the instrumental Lie-group manifold. Notice that & describes

ballistic motion and
= PXEOXE

I
is a Laplacian that describes diffusion.
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Instrument manifold program

The motion of the Kraus operators on the group manifold G is analyzed using the three faces of
the stochastic trinity. The overall quantum operation is given by a Wiener-like path integral of the

measurement record,

Zr = / Du[dWio 1] LIdWio 1] @ LIdWio ]

Ly = L[dWjo ]

it is the solution of a Lindblad equation in which the measured observables are the Lindblad operators.

The Kraus-operator paths satisfy a stochastic differential equation (SDE),

Maurer-Cartan form (Stratonovich): dL;L}. ., =8 =X -vkdW — X2k dt,

"t4dt /2

1 )
Modified MC stochastic differential (Itd): dL;L;' — E(dL’ Eatla=o

Stochastic differential equation

A Kraus-operator distribution function (KOD) is defined by a Wiener path integral,

Dr(L) = / ’D;.t[dﬁ”lo_m] 6(L, L-[dl-i?[o_;r)]),

Wiener path integral

where the é-function is defined relative to the Haar measure of G. The KOD evolves according to a

Fokker-Planck-Kolmogorov equation (FPKE),
18D(L)
27 f‘)’

= A[DJ(L), i

where the underarrows denote right-invariant derivatives,

r(ChX TN B fT
e f ((. L) F() .
h—0 h

XIA(E) = - F(¥ D)

h=0

Diffusion equation

these being the natural vector fields on the instrumental Lie-group manifold. Notice that & describes

ballistic motion and
it e G
S
is a Laplacian that describes diffusion.

Stochastic trinity
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Instrument manifold program

The Lie algebra for the instrumental Lie group can be processed using the matrices
of a particular representation or processed universally, using only the commutators,
within what is called the universal enveloping algebra. The universal instrumental
group is detached from Hilbert space.

Universal instruments detached from Hilbert space.

Special measurements, such as simultaneous momentum and position measure-
ment (SPQM) and isotropic measurement of the three spin components (ISM),
have a low-dimensional universal instrumental group; the instrument's POVM
approaches a boundary of coherent states at late times, which is the strong mea-
surement of the observables (we call this collapse within irrep). These instruments
we call principal instruments. They connect classical phase space to the identity
and structure any Hilbert space in which they are represented.

Generic measurements—two components of spin, two squeezing symplectic genera-
tors—have an infinite-dimensional universal instrumental group; the instrument’s
evolution is chaotic, and there is no universal strong measurement of the observ-
ables. These instruments we call chaotic instruments.
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v
SPQM, ISM, and"¢Raos

Truchas from East Pecos Baldy
Sangre de Cristo Range, northern New Mexico

s
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Simultaneous momentum and position
measurement (SPQM): A principal instrument

Measure position Q and momentum P.
@ohnEtaEcE @Rl = il
Quadratic term: Q2+ P2 = 2H,

7D instrumental Lie algebra: span{l,:1,:Q,—iP,Q, P, Ho}

7D instrumental Lie group, the Instrumental Weyl-Heisenberg Group,
IWH = CWH x eRFfe

Coordinate manifold with Cartan-like decomposition,
group-theoretic singular-value decomposition,

Kraus operator L = (Dge''?)e "D}
Dg and D, are phase-plane displacement operators.

POVM element E = L'L =e 21D e H2r DI

Base manifold of positive transformations @ /) = D0}
(£, ¢) = (center normalization and phase) |0)
r = (ruler/purity), dr =2kdt, r = 2xtis ballistic ¢ :

8 = (post-measurement phase-plane)
a = (POVM phase-plane)

r=0: E=LL=e¢21
P O EZLTL:€72£‘O{>(OJ|
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SPQM: A principal instrument

Kt’aUS ODel’atOr b = ([)}(/1(1)( EHnr l'{[)(i\
POVM element E = L'L = e 21D, e %" DI

(¢, ¢) = (center normalization and phase)
r = (ruler/purity), dr =2kdt, r = 2kt is ballistic
8 = (post-measurement phase-plane)
a = (POVM phase-plane)

Work in the coset of the center Z = {e“*"“‘?’))};
i.e., identify points with different center codrdinates ¢ and ¢.

4

= 2kT
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SPQM: A principal instrument

B—a\\\\ ///’ﬁ B=a __»B4a

(074

KOD as t — oo is uniform in g-«

e 4-plane. Ballistic collapse to LiL,
r—oo: L=|al, L'L=]a)q ;‘a{ I.r!a:ne;oherent—state boundary

B—a\\\\ ///’ﬁ B=a _»p8+4a
/ M == Dﬁe_HOQHTDL

"

KOD at ¢t =T is a Gaussian,

e \un}iform in 84 a, centered

r=2kT: L= Dge H2:Tpt L = D, e—HART pt orr the 2-plane 8 = «, with
' 2 ar “ @ mean-square distance between
B and « given by > = gT — tanh sT.

[3—(}\ ﬁ ﬂ:()g ,‘S-l—()[
/ M
:D:Z
=

KOD at t =0 is a uniform

Wtribution on the 2-plane 8 = a.
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Isotropic spin measurement (ISM):
A principal instrument

Measure J;, J,, and J..
EamuniitareEEE Sttt
Quadratic term: J2 4 J2 4 J2 = j2 = Casimir invariant = 1,5(j + 1)
7D instrumental Lie algebra: span{—iJy, —iJy, —iJs, Jz, Jy, Jo, J2}

7D instrumental Lie group, the Instrumental Spin Group, ISpin(3) = SL(2,C) x eRJ?
Codrdinate manifold with Cartan decomposition, 17, Z)
group-theoretic singular-value decomposition, - j, @) = D; 4, 3)
Kraus operator L = (Dse *%)e "q""*’“i)jﬁ}
Dy and Dj are spherical displacement operators. >

POVM element E = L'L = ¢ 7% D;e’2*D!
Base manifold (symmetric space)
of positive transformations.

S ~ o —J20kt
¢ = (center normalization), d¢ = xdt, 51— @0 T — :
1) = (geodesic curvature between past and future)

a = (radial/purity), da; = xdt cotha; + /kdY;”,
a is ballistic and diffusive

m = (post-measurement Bloch sphere)

n = (POVM Bloch sphere)
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ISM: A principal

Coordinate manifold with Cartan decompaosition,
group-theoretic singular-value decomposition,

Kraus operator L = (Dje %)= tl.a pf
POVM element E = L'L =e¢ 7 2De’22p!
¢ = (center normalization), df = xdt,
¢ = kt is ballistic
i = (geodesic curvature between past and future)
a = (radial/purity), da; = sdt cotha; + /ckdY”, o
a = :
a is ballistic and diffusive
a— oo |

m = (post-measurement Bloch sphere)
n = (POVM Bloch sphere)

instrument

T, = CJ—J_“2H1

LYL oc 77725, /) {7, 7|

The base manifold of positive transforma-
tions (POVM elements) is a symmetric space,
in this case a 3-hyperboloid of constant neg-
ative curvature, coordinated by a and n.

To get the induced geometry right, one
must embed the hyperboloid in
Minkowski space, not Euclidean space.
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ISM: A principal instrument

3-hyperboloid
fa— D.ﬁe']:Qﬁ'D_j;l — g2ah-J Radius a . E — ¢2an-J
E=1ata=20 Area 4w sinh“a

g — eZa-jIj? ﬁ) (J) ﬁ‘
a—o0o

Z5
S/

Not flat space Not 3-sphere
Radius a Radius a
Area 4ma? Area 4rsin‘a

3-hyperboloid
Radius a
Area 4rsinh3q
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Principal vs. chaotic instruments

SPQM and ISM are principal universal instruments, for which the
universal instrumental group is finite-dimensional. Principal instruments
are very special: they approach a strong measurement of coherent
states asymptotically; they thus structure any Hilbert space in which
they are represented.

Generic measurements—two components of spin, two squeezing
symplectic generators—have an infinite-dimensional universal
instrumental group because of the nonlinear quadratic term.
They do not have a representation-independent strong
measurement, and the evolution of the instrument devolves into
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manifold that supports al

reader who has survived to re

long paper might be pleased—or so we
ambition is larger than was evident at the b

Welcome to a
whole new world g

Cable Beach
Western Australia
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