Title: Examining challengesto LCDM model near and far: from nearby dwarf galaxies to UV bright galaxies at z>5
Speakers: Andrey Kravtsov

Series: Cosmology & Gravitation

Date: September 19, 2023 - 11:00 AM

URL.: https://pirsa.org/23090109

Abstract: | will present a galaxy formation model within the Lambda Cold Dark Matter (LCDM) framework that is calibrated on the results of
galaxy formation simulations and some of the empirical properties of nearby dwarf galaxies. | will then use the model to interpret a number of
ostensible challenges to the LCDM framework, such as the "too-big-too-fail problem”, "central density problem™ and the "planes of satellites’
problem and will argue that none of these pose a serious challenge to LCDM, as the corresponding observations can be largely understood within
the current galaxy formation modeling. | will also show that the same galaxy formation model can explain the abundance of UV-bright galaxies at
z& gt;5 measured by the Hubble Space Telescope and James Webb Space Telescope recently, if the expected increase of burstiness of star formation
in galaxies towards early epochs is taken into account.
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Examining challenges to the
Lambda Cold Dark Matter (LCDM) model near and far:

from nearby faint dwarf galaxies to bright galaxies at z>5

Andrey Kravtsov

Leo IV dwarf galaxy
Legacy Survey (DES camera)
https://www.legacy.org/
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Bright nearby galaxies
Sloan Digital Sky Survey (SDSS) https://wwW.sdsstorg/ *

«—>
30kpc ~

. -~ » .

- o d
10° Msun log of stellar'mass M.,

each column a fixed step in

Pirsa: 23090109 Page 3/50



M, ~ 107]W@ dwarf galaxy
D =10 Mpc
Legacy Survey (DES camera) *

htt'ps://www.legacy.org/
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M, 10" M, Leo IV dwarf galaxy ,
« D=145kpc
Legacy Survey (DES camera) -

https://www.legacy.org/ .
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The number of known dwarf satellite galaxies around the Milky Way
has rapidly increased over the past two decades

and now constrains properties of dark matter particles

Number of satellite galaxies known within 300
kpc of the Milky Way as a function of time
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Simon, J. & Geha, M. 2021, Physics Today 74, 11, 30
https://physicstoday.scitation.org/doi/10.1063/PT.3.4879
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Evolution of a Milky Way-sized halo in Lambda Cold Dark Matter (LCDM)

z= 10 dark matter

Kravtsov, A. 2010, Advances in Astronomy (arXiv/0906.3295)
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The number of known dwarf satellite galaxies around the Milky Way
has rapidly increased over the past two decades

and now constrains properties of dark matter particles

Number of satellite galaxies known within 300
kpc of the Milky Way as a function of time
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Simon, J. & Geha, M. 2021, Physics Today 74, 11, 30
https://physicstoday.scitation.org/doi/10.1063/PT.3.4879
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Evolution of a Milky Way-sized halo in Lambda Cold Dark Matter (LCDM)
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Kravtsov, A. 2010, Advances in Astronomy (arXiv/0906.3295)
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In the Warm Dark Matter (WDM) model particle velocities erase density
fluctuations below a certain scale which reduces amount of small-scale

structure in halos

Top and bottom rows:
the same patch of
space (left column)
and the same halo
(right column)
simulated in the CDM
and WDM scenarios

WDM particle has a
light mass which leads
to erasure of small-
scale structure

o Credit: Moore, B. et al. 1999, MNRAS 310, 1147
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The WDM particle mass can be increased
until the abundance of halos that can host observable dwarf galaxies
matches the observed number of dwarf galaxies

blue = dark matter distribution
/red = subhalos that are expected to host observable dwarf galaxies

o Credit: Lovell, M. et al. 2021, MNRAS 507, 4826
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Constraints on dark matter models using luminosity
function of dwarf satellite galaxies of the Milky Way

To match the observed number of dwarf galaxies around Milky Way at different luminosities parameters of WDM, self-
interacting dark matter, and fuzzy dark matter model are constrained to be

Nadler et al. 2021, Phys Rev Letters 126(9), 091101

Dark matter paradigm  Parameter Constraint Derived property Constraint

Warm dark matter Thermal relic mass mwpwm > 6.5keV Free-streaming length Ag < 10 Rt kpc

Interacting dark matter Velocity-independent 00 < 8.8 x 107 cm? DM-Proton coupling ¢, < (0.3GeV)~?
DM-Proton cross section

Fuzzy dark matter Particle mass mg > 2.9 x 1072 eV de Broglie wavelength  A\ap < 0.5kpc
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Structure and halo formation Fuzzy Dark Matter (FDM)

TERMINOLOGY Hu, Barkana & Gruzinov 2000, PRL

We use the term axion to loosely refer to both the QCD axion and an axion-like particle, ALP (Section 2). The term

fuzzy dark matter, FDM. is reserved for the ultralight part of the mass spectrum, 72 ~ 10-*-10-2* eV. Wave dark Recent reviews:

. . . : Hui, L. 2021, ARAA
In such model de Broglie wavelength of DM particles is macroscopic Ferreira, E.G.M. 2021, A&A Reviews

(100s of pc to ~kpc) and wave properties of particles are manifested Niemeyer, 1.C. 2020 Prog. Part. Nucl Phys
on the scale of dwarf galaxies

Simulations show widespread interference pattern in forming halos
with a typical density fluctuation amplitude of (5P ~ p

Schive, Chiueh & Broadhurst. 2014, Nature Physics
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The Fuzzy Dark Matter regime
is excluded by observed properties of dwarf galaxies

If stars in dwarf galaxies were embedded in fuzzy dark matter they would get heated by the perturbations
arising from wave interference. This is rigorously shown using humerical simulations of stars in FDM
halos
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FIG. 1. Example FDM density snapshots for NFW halos. The left panel shows a simulation with mrpm = 2 X 1071 eV,
while the right panel has mrpym = 8 x 1071 V. Length units are parsecs, and the color scale is logarithmic in density p. For
comparison, the galaxies that we analyze have half-light radii R;;, ~ 25 — 40 pc.

Dalal & Kravtsov 2022,
Phys Rev D 106(6), 063517 (arXiv/2203.05750)

Oa
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Half-mass radius of stars

Velocity dispersion of stars

Dynamical heating of stars in the faintest dwarfs by FDM
fluctuations excludes FDM as the dominant dark matter

t (Gyr)

mppm = 1 x 10706V

— = mppy =2 X 1079V

1 2 3

\/7((:\1-"'? .
) Ssquare root of time

Observed sizes and velocity dispersion of smallest
dwarf galaxies around Milky Way exclude FDM with
particle masses <3 x 109 eV

Dalal & Kravtsov 2022,
Phys Rev D 106(6), 063517 (arXiv/2203.05750)
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FIG. 4. Marginalized posterior likelihood of mrpy. Each
curve shows the cumulative posterior pdf of m;llnl. while the
arrowheads at top indicate the derived 1, 2, and 3—o exclusion
regions for joint constraints combining Segue 1 and Segue 2.
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7z % . ?
over the last decade observatlons with HST and now JWST telescopes
have found many galaxies with dwarf stellar masses at z>5
(<1 Gyr after B|g Bang) iexg AR

" Hubble Space Telescope Ultra Deep Fi’e‘Id ;
Credit: NASA, ESA, and#®. Beckwith (STScl) aid the HUDF Team &
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over the last decade observations with HST and now JWST telescopes
have found many galaxies with dwarf stellar masses at z>5
(<1 Gyr after Big Bang)

’

" Hubble Space Telescope Ultra Deep Fi’e‘I'd 3
Credit: NASA, ESA, and®. Beckwith (STScl) ad the HUDF Team &
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James Webb Space Telescope (JWST) images of
galaxies at z~3-9

many galaxies have irregular morphology

Credit: NASA/STScl/CEERS/TACC/S. Finkelstein/M. Bagley/Z. Levay/). Carltartepe
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James Webb Space Telescope (JWST) images of
galaxies at z~3-9

A sizeable fraction of galaxies have regular elliptical and disky morphologies

z=5.25 [z=4.57

Credit: NASA/STScl/JADES survey: B. Robertson et al. 2023
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Two commonalities between local dwart
galaxies and most distant galaxies
observed with HST and JWST

» The first is that they both involve “dwarf’ galaxies with stellar masses
<~ billion solar masses

> And the second is...
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RESEARCH ARTICLE | ASTRONOMY | @ fYins3 2

Cold dark matter: Controversies
on small scales

David H. Weinberg &, James S. Bullock, Fabio Governato, Rachel Kuzio de Naray, and

Annika H. G. Peter -1 Authors Info & Affiliations

\call, Princeton University, Princeton, NJ, and approved December 2, 2014 (received

SCIENTIFIC
AMERICAN. SPACE & PHYSICS

Dancing Dwarf Galaxies Deepen
. Dark Matter Mystery

—— A surprising alignment between small satellites of the galaxy Centaurus A challenges the
standard model of cosmology

Dwarf galaxies suggest dark
matter theory may be wrong

® 16 September 2011

February 2, 2015 = 112 (40) 12249-12255 | https://doi.org/10.1073/pnas.1308716112

\C/\}I%EP[\FERS THE DARK MATTER CRISIS

ASTROPHYSICS

PAVEL
KROUPA

ONTHE
NON-EXISTENGE
OF DARK MATTER

W i \’ ‘," w https://darkmattercrisis.wordpress.com/
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JAMES WEBB SPACE
TELESCOPE ) Cosmic controversy: James Webb Telescope
: findings challenge best-established theories

BIG BANG
HAPPEN?

The James Webb Space Telescope ms to be finding
multiple galaxies that grew tc yon after the
Big Bang, possibly leading ling
NEWS CREATION SCIENCE UPDATE THE UNIVERSE WAS CREATED RECENTLY
u
James Webb Telescope Data: Challenges for
he Big B ?
t e |g al‘lg H ® The James Webb Space Telescope spotted six galaxies that grew too quickly after the Big
SCIENCE & TECHNOLOGY Bang.
L]

The galaxies grew quicker than the leading cosmology theory predict.

O©Apr 13, 2023
At ® Explainingthe quick growth could involve new particles or reexamining the age of the

James Webb Space Telescope Images  wiwes
Challenge Theories of How Universe Evolved

How did the James Webb Space Telescope (. .
) Sabine Hossenfelder @
0:11 ... that are showing very large massive -

O

New Galaxies Discovered Webb Telescope sees

That Shouldn't Exist! [Web... . . .

7.2K views * 5 months ago GalaX|eS TOO Blg TO EX'St
@ National Science Foundation News 431K views * 5 months ago
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Problems of LCDM?

Anisotropic distributions of dwarf satellites around Milky Way and several other nearby
galaxies (aka “The planes of satellites problem”).

Abundance of dwarf satellite galaxies as a function of mass within half-light radius
(aka the “too-big-to-fail” problem). Densities and mass assembly histories of dwarf satellites
of the Milky Way (Safarzadeh & Loeb 2021).

Abundance of the UV-bright galaxies at z>10?
¥

Distributions in the central regions of dwarf galaxies (cusp/core, diversity of rotation curves
dwarf galaxies)
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Problems of LCDM?

Anisotropic distributions of dwarf satellites around Milky Way and several other nearby
galaxies (aka “The planes of satellites problem”).

Abundance of dwarf satellite galaxies as a function of mass within half-light radius
(aka the “too-big-to-fail” problem). Densities and mass assembly histories of dwarf satellites
of the Milky Way (Safarzadeh & Loeb 2021).

Abundance of the UV-bright galaxies at z>10?

Distributions in the central regions of dwarf galaxies (cusp/core, diversity of rotation curves
dwarf galaxies)
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Halo mass evolution for halos and subhalos is
extracted from N-body cosmological simulations

The halo mass evolution provides a backbone for galaxy evolution modelling

z= 10 dark matter

Pirsa: 23090109 Page 26/50



Pirsa: 23090109

A simple framework for modelling
processes involved in galaxy formation

wind
recycling

feedback-driven
outflows

IS dynamlcs

star formatlorg
(1S feedback

feedback-driven
outflows
wind
recycling

Kravtsov & Manwadkar 2022, MNRAS 514, 2667
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B
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Viraj Manwadkar

GRUMPY model summary

Kravtsov & Manwadkar 2022, MNRAS 514, 2667
github.com/kibokov/GRUMPY
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The stellar mass — halo mass relation

This simple model reproduces stellar-mass halo mass relation of galaxies formed in high-
resolution simulations of dwarf galaxies (Manwadkar & Kravtsov 2022)
and Milky Way-sized galaxies (Belokurov & Kravtsov 2022)
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stellar mass fraction %

GRUMPY model results for L<~L* galaxies are quite
similar to results of recent galaxy formation simulations

mass fraction of the in-situ stellar mass formed in the M,q,,~10'2 Msun halos
as a function of stellar age (left) and metallicity (right)
modelled in GRUMPY (gray) and in the Auriga (magenta dotted) and FIRE-2 (colored)
simulations of MW-sized objects; black dashed line (right) is measurement in the MW.

Belokurov & Kravtsov 2022, MNRAS 514, 689
cf. Vasily Belokurov’s talk Tue afternoon
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A wide range of observed dwarf galaxy properties and correlations
are reproduced well by the GRUMPY model

Kravtsov & Manwadkar 2022, MN 514, 2667; Manwadkar & Kravtsov 2022, MN 516, 3944; Kravtsov & Wu 2023, MN 525, 325

metallicity-luminosity relation of dwarfs star formation histories of dwarfs Tully-Fisher and baryonic Tully-Fisher
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Spatial distribution of dwarf galaxies around Milky Way,
Andromeda and Centaurus A galaxies

Milky Way

Vast Polar Structure (VPOS) of the Milky Way
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Pawlowski, M., 2018
arxiv.org/abs/1802.02579

Andromeda Centaurus A
Great Plane of Andromeda (GPoA) Satellite structure around Centaurus A
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In the Milky Way the orbital poles of satellite
orbits are correlated

Pawlowski & Kroupa 2020
MN 491, 3042
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GRUMPY model summary

)

4 ravtsov anwadkar ' !

f Kravtsov & M dkar 2022, MNRAS 514, 2667
- github.com/kibokov/GRUMPY

WD A outflows M. = nM,
Viraj Manwadkar -
o : n = (M) co M, >

ISM gas mass /
evolution
AW — Mo e Mo

'\ Gas is distributed in an exponential disk

‘\G
0 M
? V Yg(R) = 27”;3 exp (—R/Ra) Ri = £ Rapoc(t)

star formation | A, 2 @, — 26y

molecular gas mass oo
using Gnedin & Draine 14 My, = 21 / Ju2 (g, Zg, fuv) Eg(R) RdR
model 0
Heavy element mass evolution y y y y
Zy— Y /M MZ,g = ZIGM g,in = sz* i nZgM*
By Z’g g MZ’* — ZgM*

©

Pirsa: 23090109 Page 33/50



Spatial distribution of dwarf galaxies around Milky Way,
Andromeda and Centaurus A galaxies

Pawlowski, M., 2018

arxiv.org/abs/1802.02579
Milky Way Andromeda Centaurus A
Vast Polar Structure (VPOS) of the Milky Way Great Plane of Andromeda (GPoA) " Satellite structure around Centaurus A
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In the Milky Way the orbital poles of satellite
orbits are correlated

Pawlowski & Kroupa 2020
MN 491, 3042
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The claim was that such flattened configurations are
exceedingly rare in LCDM

Comment | Published: 13 December 2021

It’s time for some plane speaking

Marcel S. Pawlowski®&

Nature Astronomy 5, 1185-1187 (2021) ‘ Cite this article

771 Accesses ‘7 Citations ‘ 24 Altmetric ‘ Metrics

The Milky Way, Andromeda and Centaurus A host flattened
arrangements of satellite dwarf galaxies with correlated

kinematics. The rarity of similar structures in cosmological

simulations constitutes a major problem for the ACDM model,

with no obvious solution in sight.

O
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Pawlowski & Kroupa 2020
MN 491, 3042
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Getting distance distribution right is important
in evaluating incidence of the satellite “planes™:
more concentrated distribution -> thinner plane
Pham, Kravtsov & Manwadkar 2023, MN 520, 3937 (arXiv/2209.02714); Sawala+22;
Satellite “planes”, as thin and as coherent in their orbital poles as those of the MW,
are rare for MW-sized halos in LCDM, but not too rare (MW is a 2-3 sigma outlier).
Similar configurations in nearby galaxies may be due to our location in the Local Sheet (Libeskind+15)
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0o

Dispersion of orbit poles

in degrees

Pawlowski & Kroupa 2020
MN 491, 3042
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Getting distance distribution right is important
in evaluating incidence of the satellite “planes™:
more concentrated distribution -> thinner plane
Pham, Kravtsov & Manwadkar 2023, MN 520, 3937 (arXiv/2209.02714); Sawala+22;
Satellite “planes”, as thin and as coherent in their orbital poles as those of the MW,
are rare for MW-sized halos in LCDM, but not too rare (MW is a 2-3 sigma outlier).
Similar configurations in nearby galaxies may be due to our location in the Local Sheet (Libeskind+15)
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The “too-big-to-fail problem”

The “problem” is that LCDM presumably predicts more massive satellites (using total mass within half-
light radius of galaxies) than is observed around Milky Way and Andromeda. Such massive satellites
should not have “failed” to form observable galaxies according to galaxy formation models,
so why are such galaxies not observed?

M(< r1)5) ~ 930 M 02 s Rij2pe (Wolf et al. 2010)
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total mass within half-light radius

Total mass within half-light radius
as a function of galaxy luminosity

Relation exhibited by observed galaxies (stars and upper limits) is reproduced by model
galaxies (median line and 1- and 2-sigma scatter shown by shaded bands)
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Examining the “too-big-to-fail” problem:
cumulative distributions of M, (<r,;,) in MW-sized halos

Magenta shows distribution for the Milky Way satellites: line is median, shaded regions are 16 and 2
bands estimated using bootstrap and taking into account My(<r,,,) uncertainties

Blue band shows median and scatter of the model distribution using parent subhalo mass and
concentration and assuming Lazar+20 profile accounting for feedback.
Gray dashed lines shows median for masses estimated using NFW profile

Halos with M,,(<100 kpc) = (5.7+-0.8) x 10" Msun (close to the MW Vasiliev+21)
tend to have t N(>M, 4,») distributions consistent with that of the MW satellites
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A wide range of observed dwarf galaxy properties and correlations
are reproduced well by the GRUMPY model

Kravtsov & Manwadkar 2022, MN 514, 2667; Manwadkar & Kravtsov 2022, MN 516, 3944; Kravtsov & Wu 2023, MN 525, 325
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A model for additional star formation rate (SFR) stochasticity
driven by formation and disruption of individual star forming regions

Based on the stochastic SFR framework of Caplar & Tacchella 2019; Tacchella et al. 2020; lyer et al. 2020, 2022
Pan & Kravtsov 2023, to be submitted

» Draw Gaussian random numbers A with a specified power spectral density (PSD).

> Perturb SFR(t): SFRyenasic = SFR X 108
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A model for additional star formation rate (SFR) stochasticity:
high redshifts (z > 5)
High-resolution zoom-in galaxy formation simulations of galaxies at z> 5

exhibit much higher levels of SFR stochasticity than at lower z
(but see Pallotini & Ferrara, arXiv/2307.03219)
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High-resolution zoom-in galaxy formation simulations of galaxies at z> 5
exhibit much higher levels of SFR stochasticity than at lower z
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A model for additional star formation rate (SFR) stochasticity:
high redshifts (z > 5)

High-resolution
simulations of galaxy
formation atz > 5
Resolving star-forming
regions and local
feedback
Garcia+ 2023
FIRE-2 (Ma+ 18, 19, 20)
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UV luminosity functions at z~5-9 are well reproduced by
the GRUMPY model that reproduces z=0 properties of dwarf galaxies
with a moderate level of additional stochasticity typical for zoom-in simulations of galaxy formation

Galaxies in halos following expected halo mass function at each z,
Mass assembly history evolved using an accurate approximation for halo mass accretion rate
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The model with the same parameters and level of SFR stochasticity as
for z<10 underpredicts z>10 UV luminosity functions

Consistent with many previous studies using models with regular low-z SFR stochasticity
(e.g., Yung et al. 2023; Shen et al. 2023; Qin et al. 2023, ...)
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z>10 UV luminosity functions can be reproduced with z=0 molecular
depletion time and high but reasonable SFR stochasticity

See also Shen et al., arXiv/2305.05769 and Sun et al., arXiv/2307.15305
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summary and implications

» Basic processes that govern the formation of dwarf galaxies can be captured by a
relatively simple model that reproduces many observed galaxy properties and
correlations.

» Such model within LCDM framework can be used to assess challenges to the
model:

» The incidence of the satellite planes as thin and orbitally coherent as observed are found in 2-5% of
the MW-sized hosts.

» The “too-big-to-fail” problem exists only in halos more massive than Milky Way, for which recent mass
estimates indicate Mtot(<100 kpc) = 5.7+-0.4 x 10" Msun, and M,q, = 9+-1 x 10" Msun,
when subhalo disruption due to disk tides, observational detection probability of model galaxies are
taken into account.

UV luminosity functions (LFs) of galaxies at redshifts z~5-16 can be reproduced with regular galaxy
formation physics when stochasticity of star formation rate (SFR) is explicitly modeled. The same
model reproduces z=0 dwarf galaxy properties well.

GRUMPY model and modeling of z=0 dwarf galaxies and its applications:
Kravtsov & Manwadkar 2022, MN 514, 2667 (model description)
Manwadkar & Kravtsov. 2022, MN 516, 3944 (modelling MV satellites)
Pham, [Kravtsov & Manwadkar 2023, MN 520, 3937 (planes of satellites)
Kravtsov'&|Wu 2023, MN 525, 325 {model comparison for Mtot(<rhalf)-L relation)
Pan & Kraytsov, 2023, MN to be submitted (SFR stochasticity of dwarf galaxies)
Kravtsov et al. 2023, in prep (modelling z>5 UV Tuminosity functions)
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