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Abstract: An ongoing program of work in statistical physics and quantum dynamics is concerned with understanding the character of systems which
follow an unconventional approach towards thermal equilibrium. In this talk, | will add to this story by introducing examples of simple 1D
systems---both classical and quantum---which thermalize in very unusua ways. These examples have dynamics which is strictly local and
tranglation-invariant, but in spite of this, they: @) can have very long thermalization times, with expectation values of local operators relaxing only
over times exponentia in the system size; and b) can thermalize only when they are placed in extremely large baths, with the required bath size
growing exponentialy (or even faster) in system size. Proofs of these results will be given using techniques from geometric group theory, a beautiful
area of mathematics concerned with the complexity and geometry of infinite discrete groups. This talk will be based on a paper in preparation with
Shankar Balasubramanian, Sarang Golaparakrishnan, and Alexey Khudorozhkov.
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fundamental physics question: how fast do systems equilibrate?

Everyday experience tells us that the answer is “for typical systems, fairly
quickly”.

Most interesting are systems which equilibrate slowly (or not at all), e.g.

(Abanin + Papic 21)

structural glasses spin glasses MBL systems
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thermalization game:
Design a physical system whose thermalization time 7 is as long as possible.
Rules:

» must work on a spatial lattice, with a finite dimensional Hilbert space on
each site

> dynamics must be spatially local

» you must be able to prove a bound on the thermalization time

2
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A system cannot thermalize until it is able to explore all of Hilbert space:
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every state is usually only ~ L steps away from every other state.

Example: Hamiltonian dynamics. What is the largest power of H needed to
connect any two states?

For any two Z-basis product states |y;), |y,), need at most L flips to
connect |y;) to |y»):

(1| H"|h2) # 0
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Nope — Hilbert space is usually very highly connected!

volume ~ 2L
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implications

If a system has 7 > L, it must be for a nontrivial reason.

Classically, need rough energy landscapes / bottlenecks:

L0
N/

TR

N\

hard to understand... not very natural...

irsa: 23090106 Page 11/45



every state is usually only ~ L steps away from every other state.

Example: Hamiltonian dynamics. What is the largest power of H needed to
connect any two states?

For any two Z-basis product states |y;), |y»), need at most L flips to
connect |y;) to |y»):

(1| H"|h2) # 0

Pirsa: 23090106 Page 12/45



implications

If a system has 7 > L, it must be for a rather special reason!

In quantum systems, can use interference:

requires rough energy
landscapes / very
special connectivity, also
hard to understand...
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our strategy

Change the connectivity of Hilbert space:

D~ L D> L
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The slowest examples | know of
have D ~ L? (e.g. Feldmeier + 19)

D>L

D ~ L? also occurs in other
models (Motzkin, pair flip, etc.)

volume ~ 2L
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And now... a detour into the land of geometric group theory!

image credit: T. Riley
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reminder about discrete groups:

G={(g1,...,9n | R)

examples

Z ZN 53
(g] ) (glgN =e) (rflrP=f2=erf=fr")



Definition: a word w is a string of group generators, their inverses, and
identities.

’w=91€92_19193691_1

the word problem

Given a word w, does w represent the identity element?

7, 23 53
geg™' geg 999" 999 frfr frfrd
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how long does it take to solve the word problem?

That is, given a word w ~ e, how many relations need to be used to show
that w ~ e?

S3 (rnflrt=FF=erf=fr1)
frir=frrtf

— f2 (3 steps)

— €
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Not always so easy! Consider the following:

G = (a,b,c,d|ad =bc*, cd™* =a b, b°d=c" ")

w = ab’c 4da’c?b™ ! ~ e?
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In general, the best strategy for showing that w ~ e is to randomly apply
local relations and wait until w is turned into e.

fer~t flerer
sounds like a stat mech

feffrefrefr model?!

fle filrerre

fflererre

EEET E)rrT €

irsa: 23090106
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Define the Dehn function as the time needed to solve the word problem
for words of length L:

D(L) = max (#steps to show that w ~ ¢)

lw|=L

Groups with larger D(L) are more complex, i.e. have
slower “word dynamics'.

Even simple-to-write-down groups can be incredibly
complex!

good reference: review by T. Riley
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Some simple groups with large complexity: (all infinite + non-abelian)

G D(L)
(a, b|ab = ba*) exp(L)
(a, b, c|ab = ba?, bc = cb?*) exp(exp(L))

(a, b|b"la"lbab~tab = a?) exp(--- (exp(L))---) @

—

In L



Fix a discrete group G,

G:<glaagn|R>

Consider a spin chain whose onsite Hilbert space has one state for each
generator, its inverse, and the identity:
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Each product state defines a group word:

|gl_17 €, 91,92, 6)

Hilbert space = space of group words
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We will consider dynamics consisting of arbitrary local applications of group
relations (Hamiltonian, RU circuit, classical Markov chain — all fine)

H=Y Y M"™|g h)(k, 1|
i gh=kl

In this system, e~ does our “randomly apply relations and see what
happens” algorithm.
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D(L)

€

volume ~ (# generators)”

thermalization time lower bounded by Dehn function

> D(L)
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meet the BS group — b

In 1962, Baumslag and Solitar discovered an amazing group: e (1
9 S
BS ={(a,b| ab=0ba") !
which has D(L) ~ 2% e b_l
b~ ab = a”

as we apply relations, can

b—2ab2 = b— ! a2b — a4 exponentially expand the

length of the word!
—n 1N D
b~ "ab" = a
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reminder: Cayley graphs 7
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BS Cayley graph:

| i .
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geometric picture of thermalization:
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a word with large area:

Wiarge — om b ol e ah

Area(wigrge) ~ 9
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area of a typical length-L word?

Pirsa: 23090106 Page 37/45



The relation ab = ba? conserves the number of bs. Thus the number of bs
is thus a conserved U(1) charge.

As you might expect, the hydrodynamics of this charge is pretty crazy:

t=1,%_, =10 t=1,t 4 =10
0.100
0.4
0.2 0.075
— o™
= 00 = 0.050
-0.2
0.025
-0.4
0.000
0 25 50 75 100 0 20 40 60 80 100
€T t
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e =166t — 10"

0.100
0.4

0.2 0.075

SR o™

-0.2

0.025
-0.4

0.000
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The relation ab = ba® conserves the number of bs. Thus the number of bs
is thus a conserved U(1) charge.

As you might expect, the hydrodynamics of this charge is pretty crazy:

C =00y il ¢ e 10

0.100
0.4
0.2 0.075
iy [mt]
Ei/ 0.0 W/ s:‘& 0.050
-0.2
0.025
-0.4
0.000 —
0 25 50 75 100 0 20 40 60 80 100
€T t
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Can use this to numerically bound the thermalization time:

10

10"

tl 10

10°
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n=L/10

——0.67 - exp(0.14L)

70

80 90 100 110 120 130

T 2aL
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other things:

» whole talk has been about time complexity; what about space complexity?
For some groups, words must get bigger before they can get smaller.

Sometimes they must get much, much bigger! But physically, there is a
cutoff at the system size L.

W —
b~ "ab” =aa---aa
—

2?’2, W i

can lead to an extreme form of “jamming"
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other things:

Pirsa: 23090106

» whole talk has been about time complexity; what about space complexity?

this has interesting implications for the size of a bath needed to thermalize a

subsystem:

typical system

O(lA])

(

.

Oa

our models

024 22"

52

ba th)

bath
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in the future:
» robustness against group-breaking perturbations (in progress)
» different types of anomalous group hydrodynamics (in progress)
» more natural extensions to higher d
» ground states and entanglement
» better understanding of transport + connectivity of Hilbert space

» geometric understanding of thermalization (think about e.g. random graphs)

»>
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