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Abstract: The event horizon of a dynamical black hole is generically a non-smooth hypersurface. | shall describe the types of non-smooth structure
that can arise on a horizon that is smooth at late time. This includes creases, corners and caustic points. | shall discuss " perestroikas’ of these
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Introduction

Every point of an event horizon H belongs to a null geodesic that
lies within H. These geodesics are the generators of H.

A generator cannot have a future endpoint, i.e., it cannot leave H
to the future.

Generators can have past endpoints:

Pirsa: 23090105 Page 3/29



Horizon non-smoothness

We assume that spacetime is smooth.

Theorem: H is an achronal continuous hypersurface.

(Achronal: no two points of # are timelike separated.)

H is not smooth except in very special cases e.g. a
time-independent black hole.

What is the nature of the non-smoothness of H? .
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There exist examples of spacetimes for which H is
non-differentiable on a dense set (Chrusciel & Galloway 96)

I
Theorem (Beem & Krolak 97):
» H is differentiable at p iff p lies on exactly one generator

» A point lying on more than one generator is an endpoint
(converse untrue)
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Let Heng be the set of past endpoints of horizon generators.

In explicit examples of gravitational collapse or black hole mergers,
Henda consists of a 2d spacelike crease set where pairs of generators
enter H, together with its boundary, which is a line of caustic
points (where “infinitesimally nearby generators intersect”)

(Hughes et al 94, Shapiro et al 95, Lehner et al 99, Husa & Winicour '99, Hamerly & Chen 10, Cohen et a/ 11,

Emparan & Martinez 16, Bohn et al 16, Emparan et al 17)

In 241 dimensions:
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Asymmetric gravitational collapse in 34+1 dimensions:

o~ centhe

C‘r{ﬂ-\q{ M

Non-axisymmetric black hole merger (Emparan et al 17):
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What features of these spacetimes lead to this simple structure for
Hend?

What other structures are possible?
Assumptions

» Spacetime is globally hyperbolic

» H is smooth at late time: there exists a Cauchy surface ¥ to
the future of Hepg such that H, = >~ NH is smooth

(No assumptions about equations of motion.)

We show that Heng is the past null cut locus of H,.
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Null cut locus

A null geodesic emitted orthogonally to H, cannot be deformed to
a timelike curve from H, locally. A null cut point is the first point
along a such a null geodesic beyond which it can be deformed into
a timelike curve. The null cut locus of H, is the set of all null cut
points.

\

\,‘\_\

In Riemannian geometry a cut locus can be very complicated (e.g.
fractal). But it can be decomposed into parts with simpler
structure (ltoh & Tanaka 1998). We obtained a Lorentzian
analogue of this decomposition.
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A point in a null cut locus lying on exactly one generator must be
a caustiC point (Beem & Enrlich 81, Kemp 84, Kupeli 85). S0 We can classify points
of Hepq as follows:

» caustic points

» non-caustic points

» normal crease points: lie on exactly 2 generators
» normal corner points: lie on exactly 3 generators
» points on > 4 generators

We prove:

» (a) Normal crease points form a 2d spacelike crease
submanifold

> (b) Normal corner points form a 1d spacelike corner
submanifold

» (c) All other points form a set of (Hausdorff) dimension <1

Page 12/29



Creases and corners

Normal crease points form a 2d spacelike crease submanifold.
Normal corner points form a 1d spacelike corner submanifold

Consider X NH for some Cauchy surface X. Creases are lines at
which two smooth sections of horizon meet. Corners are points at

which three smooth sections of horizon meet.
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Creases and corners

Normal crease points form a 2d spacelike crease submanifold.
Normal corner points form a 1d spacelike corner submanifold

Consider ¥ N ‘H for some Cauchy surface ¥. Creases are lines at
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Perestroikas

Let 7 be a time function and ¥, denote a Cauchy surface of
constant 7 :

> - NH is the “horizon at time 7. This will have some
arrangement of creases, corners and caustics.

As T varies, this arrangement may undergo a qualitative change at
a critical value of 7. We call this a perestroika (restructuring).

A crease perestroika occurs at a time 7 for which X, is tangent to
the crease submanifold.

Near the point of tangency, H is (part of) the union of two
intersecting null hypersurfaces. By introducing Riemannian normal
coordinates around this point we can determine the exact local

behaviour of H.

There are three qualitatively different possibilities. Shift 7 so that
perestroika occurs at 7 = 0.
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Flying saucer

This perestroika describes the nucleation of a component of H in
generic gravitational collapse

Length of crease and angle at crease scale as /7, area scales as T
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Collapse of hole in horizon

In examples of gravitational collapse or a black hole merger, some
choices of time function give a brief period where horizon has
toroidal topology (Hughes et al 94, Siino 97, Cohen et al 11, Bohn et al
16). The “hole in the torus” collapses superluminally. The collapse
is described by a perestroika:

Length of crease and angle at crease scale as /—.
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Black hole merger

This perestroika describes the merger of two (locally) disconnected
sections of horizon e.g. two merging black holes.

T<0

Angle at creases scales as /|7
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Crease contribution to black hole entropy

Old idea: some/all of black hole entropy is entanglement entropy
of quantum fields across horizon (Bombelli et al 86, Srednicki 93,
Susskind & Uglum 94). Flat space entanglement entropy exhibits
novel features in the presence of a crease (Casini & Huerta 06, Hirata
& Takayanagi 06, Klebanov et al 12, Myers & Singh 12)

Suggests that a crease might contribute to black hole entropy as

i
V G h crease

where Q is angle at crease and F < 0 with F o< 1/Q as Q — 0.
Subleading compared to Bekenstein-Hawking entropy A/4Gh

F(Q)d!

Consider “hole in the horizon” perestroika: this term remains finite
and non-zero as 7 — 0—, so discontinuous at 7 = 0. Consistent
with second law as discontinuity positive
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Creases and corners

Normal crease points form a 2d spacelike crease submanifold.
Normal corner points form a 1d spacelike corner submanifold

Consider ¥ N H for some Cauchy surface ¥. Creases are lines at
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Genericity /stability

Which features of H.,q are stable under small perturbations?

e.g. spherically symmetric collapse: Hepnq is a single (caustic) !
point. If we perturb spacetime then non-trivial crease submanifold
is present, so original structure of Hyq is unstable/non-generic.

Siino & Koike 04: classification of points of Henq assuming a
particular mathematical notion of genericity

» Non-caustic points of double, triple, quadruple
self-intersection of H

» Lines of caustic points “of type A3"

But: how to relate this notion of genericity to genericity w.r.t.
perturbations of metric?
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Generic caustic point: As

I
As caustic points form spacelike lines. A horizon cross-section
generically has isolated A3 caustic points. If we extend generators
beyond their past endpoints we obtain the swallowtail:

Why can't an Ay caustic occur on H? Would violate achronality!
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A3 perestroikas

Occur when %, is tangent to Agz line.
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Gauss-Bonnet term in entropy

A "Gauss-Bonnet” term in gravitational action is topological in 4d
but contributes to black hole entropy (Jacobson & Myers 93, Iyer & Wald 94)

ScB =’Y/ d*x/uR[y]
H

¥
On smooth horizon Sgg = 47yx where Y is Euler number of H.

For non-smooth horizon, “regulate” Sgg, defining via a limit of
smooth surfaces to obtain same result. Sgg is discontinuous in
black hole formation or merger, so only v = 0 is consistent with
2nd law (Sarkar & Wall 11)

But: does Sgp actually need regulating? No: integral is
well-defined for creases, corners and Az caustics. No longer
topological, continuous in black hole formation/merger.

Still find v = 0 if no “higher order” terms in entropy but 7y
unconstrained if such (EFT) terms are present.
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Bousso entropy bound (99)

A lightsheet is a non-expanding null hypersurface ending at caustic
set. Consider entropy S crossing lightsheet emanating orthogonally
from a 2d spacelike surface ¥ of area A. Conjecture: § < A/4Gh.

Proof for matter possessing a local entropy current obeying
reasonable conditions (Flanagan, Marolf & Wald 99): if lightsheet
terminates at 2d spacelike ¥’ then S < (A — A")/4Gh

Could terminate
lightsheet at null cut locus

0’ of X (Tavakol & Ellis 99).
Our results for a general
null cut locus combined
with the FMW proof give

é/—wuﬁq“-
/ S < (A —2Accase)/4Gh

C aué)" ¢ [
cresde GC*
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