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Abstract: In thistalk, | will consider the centralizer of the quantum group U_q(sl_2) in the tensor product of three identical spin representations. The
case of spin 1/2 (fundamental representation) is understood within the framework of the Schur-Weyl duality for U_q(s_N), and the centralizer is
known to be isomorphic to a Temperley-Lieb algebra. The case of spin 1 has also been studied and corresponds to the Birman-Murakami-Wenzl
algebra. For a genera spin, | will explain how to describe explicitly the centralizer (by generators and relations) using a combination of the braid
group agebra and the Askey-Wilson algebra, which has been introduced in the context of orthogona polynomials.
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U(sl,) = End((C")®%) <& CS,
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Schur—Weyl duality
Vector space C" of finite dimension n, take k-fold tensor product (C")®k.

e Diagonal action of X € sl, on (C")¥k

X-(V1®V2®---®Vk) = X1 ® Vo @ ... & Vi
+ i ® X-v» ® ... & Vi
aa
-+ vi ® vo ® ... & X‘Vk

Extension of this action to universal enveloping algebra U(sl,).

e Action of symmetric group algebra CSy on (C")®k

0 (1® - BVi®Vi1® QW) =V1® BVt 1®Vi® - Qv

g
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U(sl,) = End((C")®%) <& CS,

The images of U(sl,) and CSy in End((C")®X) are full mutual centralizers.

&(CSk) = Endy(er,) ((C")®X)
m(U(sln)) = Endcs, ((C")®¥)

Endy(er,) ((C")®) = {f € End((C")®¥) | fr(X) = m(X)f VX € U(sly)}
Endcs, ((CM)®%) = {f € End((C™)®¥) | fp(0) = p(o)f Yo € CSi}

CSy irrep  U(sly,) irrep

n\ Xk

(C")=" = @ My, & V,
Ak
{AN)<n

Sum over partitions A of k with at most n rows.
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Different versions of Schur—Weyl duality
® 50,,5p, <> Brauer algebra By(=£n)
o U4(sl,) <> Hecke algebra Hi(q)
o Uqy(s0p), Ug(sp,) < Birman—Murakami-Wenz| algebra BMW,(q, /)

Ug(sl,) = End((C")®%) <& Hy
Important remark
The map ¢ surjects on the centralizer but is not injective in general.

Enqu(sln)((C”)@:k) = Hecke algebra Hy(q) iff k < n.
For k > n+ 1, quotient of Hi(q) by g-antisymmetrizer on n+ 1 points.

Endy, (s1,) ((C?)®¥) = Temperley—Lieb algebra TLi(q).
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Question: What if we chose different representations?

Uqg(sl2) has irreps of dimension 2s + 1 for s =0,3,1,3,... (“spin”).

Can consider rep on C**1tl @ C?2tl @ ... @ C?+1,

[+ Enqu(SIZ)((C2)®k) = TLy (spins %)

o Enqu(Slz)((C?’)@:k) 2= quotient of BMWj (spins 1)
Non-trivial kernel for k > 3 generated by a quasi-idempotent in BMW,.
[Lehrer, Zhang]

° Enqu(Slz)(((CQSH)W‘) 2 quotient of braid group algebra By.
In general, kernel not known.

o Endy, (s,)((C* 1) @ (C*2 1) @ (C?+1)) = quotient of Askey-Wilson
algebra AW(3).
Conjecture for the kernel. [Crampé, Vinet, Z ]

In particular,
Zyf— Eidp el G55

is a quotient of both B3 and AW(3).
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Braid group algebra and its quotients

B\ has invertible generators o; for i = 1,2,..., k — 1 with relations
oj0j = 00}, |I'__j-|>1,
Oi0i+10; = 0410011, D s =0
i i—I—l k i !+1 k

@ Knot theory, link invariants, TQFT;

@ Yang—Baxter operator representations.
Braid generators represented by R-matrices R; ;1.

@ Integrable systems, statistical mechanics.

Surjective map By — Endy, (g,) ((C*T1)®F).
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By

0j0j4+10] = 0410041

— T~

Hi(q)
(0i —1)(oi +g°) =0 (0i = 1)(oi + ¢°)(0i — ¢°) = 0
l l
TLi(q) BMW,(q)
eejr16 = 6 2e; eiaillei = vtlg
. it q .. (ot q°)(oi — q°)
T 1+ ¢ ([N —qf)
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Askey-Wilson algebra

@ AW polynomials: g-hypergeometric orthogonal polynomials.
Discrete version: g-Racah polynomials.

@ Top of g-Askey scheme. (classical OPs)
@ Recurrence and g-difference operators satisfy AW/(3) algebra. [Zhedanov]

1(x)pn(1(x)) = Anpn+1(12(x)) + Bapn(pi(x)) + Copn—1(p(x))
AnpPn(p(x)) = A(x)pn(p(x + 1)) + B(x)pn(p(x)) + C(x)pn(p(x — 1))
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@ Racah problem for Ug(sly):
(1 ®J2) ®jz3 =j1 ® (j2®j3)

Change of basis coefficients are g-Racah polynomials.
Racah coefficients, 6j-symbols.

o AW(3) is realized as the diagonal centralizer of U,(sl,) in Ug(slp)®3.
Generators of AW(3) mapped to intermediate Casimir elements for
Uq(S[Q)Z C12, Co3, Ci3 and central elements Cq, G, G5, Cio3.

Surjective map AW(3) — Endy,(4,)(C1 ! @ C+1 @ Ct1),
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We will consider a specialization of AW/(3) corresponding to j1 = j» = j3.
It is generated by three elements A, B, C and central element &

[A, B], [C, A, [B, Clq Xs
WLl SO S s e Y P | S D
> —q2 ¢ —q2 ¢ —q2 ot X

[X,Y]q = qXY — g 1¥X
e q2$+1_+_q—25—1

There is a central element Q € AW(3), polynomial in A, B, C, k.
Q = xs(k+ xs)(gA+ g 'B+qC) — ¢°A* — ¢ °B* — ¢°C* — gABC.
Special Askey—Wilson algebra:

Q = r(k+x2) +3x2 — xo0.
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Objective

AW (3) Bs
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Objective:
Find an explicit algebraic description of centralizer Z, for any spin s, by
combining braid group and Askey—Wilson algebra relations.
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Centralizers of U,(sl,)

Suppose g not root of unity.

Spin irreps Vs of dimension 2s + 1 (Vs = C?5+1).
Representation Ug(sl2) — End(V5) ~ (2s + 1) x (25 + 1) matrices.

Can act on tensor products using coproduct,
A Uq(slg) — Uq(5[2) X Uq(5[2)

Ug(sl2) — End(Vs @ Vs ® Vi)

Question: What elements in End(V3) commute with action of U,(sl)?

The set of all such elements is the centralizer Zs.
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Twofold tensor product
Tensor product decomposition of U,(sl2) irreps:

2s
V. ® V, & @ V..
r=0

Example

S
Fors—z,

Vé@V%gVo@Vl.

If X € Ug(sl2), this means that there is a basis such that

Xo 0 * 0
x k%
X =
i 0 X1 0| % x x*
Xk %

E(") := projector on the irrep V, for r =0,1,...,2s.
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Threefold tensor product

3s

d: 1

Vs@‘-/s@vsg-@ Vjeaje Jmln—oori-
J=Jmin

d; : degeneracies

VigViaVi 2 V&g Ve=ViapVig V.
2 2 2 ] 2 2 2 .

[ Xi| 0 \
02 X1 0
X — :
0 X%
\ /
dim(Z Z d? = 2s+ 1)((2s + 1)* + 1)
J=Jmin 14 /23
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R-matrix
There is a universal R-matrix R € Ugy(sly) @ Uq(sla).

From this, one can construct the braided R-matrix K € End(Vs ® Vs).

R is a matrix that commutes with the action of Ug(slz) on Vs @ V.

2s 2s
- @ q-ldy, = Z qrE(r)_ qr = (_l)rqr(r+l)_
r=0 r=>0

Define Rj» == R ® Idy, and Ry3 1= ldy, ® R.

These clearly belong to Zs (commute with action of Ug(slz) on VE3).

In fact, Ry and R,3 generate Z.
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R-matrix
There is a universal R-matrix R € Ugy(sly) @ Uq(sla).

From this, one can construct the braided R-matrix K € End(Vs ® Vs).

R is a matrix that commutes with the action of Ug(slz) on Vs @ V.

2s 2s
- @ g-ldy, = Z qrE(r)_ qr = (_l)rqr(r+l)_
r=0 r=0

Define R == R ® Idy, and Ry3 1= ldy, ® R.
These clearly belong to Zs (commute with action of Ug(slz) on VE3).
In fact, Ry and R,3 generate Z.

They satisfy the braided Yang—Baxter equation

R12R23R12 = Ry3R12Ro3.
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Starting point for the algebraic description of Zs

B3: invertible generators o1, 0> with braid relation

Jg10201 — 02010>.

B5(q): add characteristic equations

2s

H(O‘,‘ —gp) =0, fori=12.
p=0

Define idempotents for r =0,1. ..., 2¢ and f =12

16 /23
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Intermediate Casimir elements
There is a Casimir element in Ug(slz). Acts as xsldy, on V.

Its action on Vs ® V5 is some matrix C € End(V; ® Vs).

C is a matrix that commutes with the action of U,(sly) on Vs ® V.

2s 2s
C = @.\rld\/, — ZXrE(r)-
r=0 r=0

Define (i3 := C ® Idy, and (3 :=Idy, ® C. These generate Z;.

Define (i3 := é12 C23R1_21 — F(’zgl C12é23,
and Cio3 := the Casimir element in End(V£3).

The triplet (Ci2, Coz, C13) together with the central element (i3 satisfy
the special AW relations.
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Intermediate Casimir elements
There is a Casimir element in Ug(slz). Acts as xsldy, on V.

Its action on Vs ® V5 is some matrix C € End(V; ® Vs).

C is a matrix that commutes with the action of U,(sly) on Vs ® V.

2s 2s
C = @.\rld\/, — ZXrE(r)-
r=0 r=0

Define (i3 := C ® Idy, and (3 :=Idy, ® C. These generate Z;.

Define (i3 := é12 C23R1_21 — F(’zgl C12é23,
and Cio3 := the Casimir element in End(V£3).

The triplet (Ci2, Cosz, C13) together with the central element (i3 satisfy
the special AW relations.

[Ci2, Ca3]q
P — g2

= 5 — X
+ R C23R121 — X—;(Clgg Gk X5|dvs®3).
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Askey—Wilson braid algebra
AWB;(q): Define elements

2s
8i = Z.\re!‘(r). fard =1, 2
r=0

Impose AW relations for the triplet (g1, g2, 01g201_1).

Cgfl;g;_]_qz‘ + o180, = [(715’22 (il_;;%l]q + &2 = [g2;;21;g2q0—1_21]q + &1
= 25+ xs)
A Special AWB;(q): Impose special relation for central element €.
Q = k(k+ x2) +3x3 — xo-
18 /23
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Final quotient

As: add relation
.
eV goel”) = el
X0
Claim: A, = /..

Some remarks:
e A, generated by 01,0, or g1, g or e{r) () for r=0.1,.. .. 2s.

@ Characteristic equations for g;

2s

H(g,- —Xp)=0, fori=1,2
p=0
@ Step 5: equivalent to adding
(0) _ (0)

19/23
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Isomorphism

As has been constructed such that we have a homomorphism with the
centralizer Zs (mapping As — Zs that preserves relations).

o1+ Ri2, 02— Ros,

1
g1 Co, g+ Gz, o1807 = Gz, rk+— (o3,

) (r)

eir oy El(g). e Ez(';)-

It is surjective because the centralizer Zs is generated by Rj», Ra3
(or Cyp, Cp3 or projectors El(£)~ E2(;)).

This means that dim(.As) > dim(Z;).

The complicated part is to show that it is injective (no other relations are
required).
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Isomorphism

As has been constructed such that we have a homomorphism with the

centralizer Zs (mapping As — Zs that preserves relations).
a1 —> é12- g2 > ﬁ’23=

=
g1 Cro, g+ Gz, o107 = Gz, k+— (o3,

e s EY), &l s ESD.

It is surjective because the centralizer Zs is generated by Ri», Ra3

(or Cyp, Cp3 or projectors El(£)~ E2(;)).

This means that dim(.As) > dim(Z;).

The complicated part is to show that it is injective (no other relations are

required).
Suffice to show that dim(As) < dim(Zs).
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Injectivity
The idea is to find a spanning set for Ag with cardinality = dim(Zs).

This spanning set will therefore be a basis for A5 = Zs.

Outline
e PBW basis for AW(3), and algzofl = ngglag

{gfgﬁ’(aglgloz)cnp | a,b,c,p € N}

@ Characteristic polynomials for g; and g»

{gfg505  gfo2rP | 0 < a,b,c <2s, p € N}

o gi — ega), gé’az_l — gff', g — egc), oo invertible, k central

{efa)gﬁl’eﬁc)f«:p | 0< a,b,c <25, pe N}

21 /o3
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o AW(3) relations imply

e§)g26§): if [a—c| > b.

{e{ )gbegc)hp |0<a,c<2s, [a—c|<b<2s, peN}

@ Special AW/(3) relations imply
ega)g2|a—c|+ne§c) _ P( c)( ) ()g2|a C|6£C)

{e§ )g2|a C'e{C)HP |0 < a,c <25, pe N}

@ braid + special AW(3) + final relation imply

a-+s

[T s=x)e? =0

r=|a—s|

{e1 grlf C|e§chp |0 <a,c<2s, 0< p<n(ac)}
This set has cardinality = dim(Zs) = As & Zs.
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Conclusion

Summary

o Algebraic description of the centralizer of Ug(sl2) in the tensor
product of 3 identical copies of spin-s irrep, for any s.

@ Combine braid group relations on 3 strands with special AW/(3).

Some perspectives
@ n copies: B, and higher rank AW (n).
@ g root of unity?

35 o
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