Title: Title: Braid group, Askey-Wilson algebra and centralizers of U_q(sl_2)

Speakers: Meri Zaimi

Series: Mathematical Physics

Date: September 14, 2023 - 11:00 AM

URL: https://pirsa.org/23090099

Abstract: In this talk, I will consider the centralizer of the quantum group $U_q(sl_2)$ in the tensor product of three identical spin representations. The case of spin 1/2 (fundamental representation) is understood within the framework of the Schur-Weyl duality for $U_q(sl_N)$, and the centralizer is known to be isomorphic to a Temperley-Lieb algebra. The case of spin 1 has also been studied and corresponds to the Birman-Murakami-Wenzl algebra. For a general spin, I will explain how to describe explicitly the centralizer (by generators and relations) using a combination of the braid group algebra and the Askey-Wilson algebra, which has been introduced in the context of orthogonal polynomials.

Zoom link: https://pitp.zoom.us/j/98471794356?pwd=NjZFdjRFaDFON05HNkdTZS9hZTUvQT09

Pirsa: 23090099 Page 1/28

Braid group, Askey–Wilson algebra and centralizers of $U_q(\mathfrak{sl}_2)$

Meri Zaimi

Université de Montréal

based on joint work with Nicolas Crampé, Loïc Poulain d'Andecy, Luc Vinet

Mathematical Physics Seminar Perimeter Institute

September 14, 2023

1/23

Pirsa: 23090099 Page 2/28

$$U(\mathfrak{sl}_n) \xrightarrow{\pi} \operatorname{End}((\mathbb{C}^n)^{\otimes k}) \xleftarrow{\phi} \mathbb{C}S_k$$

3 / 23

Schur-Weyl duality

Vector space \mathbb{C}^n of finite dimension n, take k-fold tensor product $(\mathbb{C}^n)^{\otimes k}$.

• Diagonal action of $X \in \mathfrak{sl}_n$ on $(\mathbb{C}^n)^{\otimes k}$

$$X \cdot (v_1 \otimes v_2 \otimes \cdots \otimes v_k) = X \cdot v_1 \otimes v_2 \otimes \cdots \otimes v_k \\ + v_1 \otimes X \cdot v_2 \otimes \cdots \otimes v_k \\ + \cdots \\ + v_1 \otimes v_2 \otimes \cdots \otimes X \cdot v_k$$

Extension of this action to universal enveloping algebra $U(\mathfrak{sl}_n)$.

ullet Action of symmetric group algebra $\mathbb{C} S_k$ on $(\mathbb{C}^n)^{\otimes k}$

$$\sigma_i \cdot (v_1 \otimes \cdots \otimes v_i \otimes v_{i+1} \otimes \cdots \otimes v_k) = v_1 \otimes \cdots \otimes v_{i+1} \otimes v_i \otimes \cdots \otimes v_k$$

2 / 23

Pirsa: 23090099 Page 4/28

$$U(\mathfrak{sl}_n) \xrightarrow{\pi} \operatorname{End}((\mathbb{C}^n)^{\otimes k}) \xleftarrow{\phi} \mathbb{C}S_k$$

The images of $U(\mathfrak{sl}_n)$ and $\mathbb{C}S_k$ in $\operatorname{End}((\mathbb{C}^n)^{\otimes k})$ are full mutual centralizers.

$$\phi(\mathbb{C}S_k) = \operatorname{End}_{U(\mathfrak{sl}_n)}((\mathbb{C}^n)^{\otimes k})$$
 $\pi(U(\mathfrak{sl}_n)) = \operatorname{End}_{\mathbb{C}S_k}((\mathbb{C}^n)^{\otimes k})$

$$\operatorname{End}_{U(\mathfrak{sl}_n)}((\mathbb{C}^n)^{\otimes k}) = \{ f \in \operatorname{End}((\mathbb{C}^n)^{\otimes k}) \mid f\pi(X) = \pi(X)f \quad \forall X \in U(\mathfrak{sl}_n) \}$$

$$\operatorname{End}_{\mathbb{C}S_k}((\mathbb{C}^n)^{\otimes k}) = \{ f \in \operatorname{End}((\mathbb{C}^n)^{\otimes k}) \mid f\rho(\sigma) = \rho(\sigma)f \quad \forall \sigma \in \mathbb{C}S_k \}$$

$$(\mathbb{C}^n)^{\otimes k}\congigoplus_{\substack{\lambda\vdash k\\ell(\lambda)\leq n}}^{\mathbb{C}S_k ext{ irrep}}\otimes igoplus_{V_\lambda}^{U(\mathfrak{sl}_n) ext{ irrep}}$$

Sum over partitions λ of k with at most n rows.

3/23

Pirsa: 23090099 Page 5/28

Different versions of Schur-Weyl duality

- $\mathfrak{so}_n, \mathfrak{sp}_n \leftrightarrow \text{Brauer algebra } B_k(\pm n)$
- $U_q(\mathfrak{sl}_n) \leftrightarrow \mathsf{Hecke}$ algebra $H_k(q)$
- $U_q(\mathfrak{so}_n), U_q(\mathfrak{sp}_n) \leftrightarrow \text{Birman-Murakami-Wenzl algebra } BMW_k(q, \nu)$

$$U_q(\mathfrak{sl}_n) \stackrel{\pi}{\to} \operatorname{End}((\mathbb{C}^n)^{\otimes k}) \stackrel{\phi}{\leftarrow} H_k$$

Important remark

The map ϕ surjects on the centralizer but is not injective in general.

 $\operatorname{End}_{U_q(\mathfrak{sl}_n)}((\mathbb{C}^n)^{\otimes k})\cong\operatorname{Hecke}$ algebra $H_k(q)$ iff $k\leq n$.

For $k \ge n+1$, quotient of $H_k(q)$ by q-antisymmetrizer on n+1 points.

 $\operatorname{End}_{U_q(\mathfrak{sl}_2)}((\mathbb{C}^2)^{\otimes k}) \cong \operatorname{Temperley-Lieb} \operatorname{algebra} TL_k(q).$

4 / 23

Pirsa: 23090099 Page 6/28

Question: What if we chose different representations?

 $U_q(\mathfrak{sl}_2)$ has irreps of dimension 2s+1 for $s=0,\frac{1}{2},1,\frac{3}{2},\ldots$ ("spin"). Can consider rep on $\mathbb{C}^{2s_1+1}\otimes\mathbb{C}^{2s_2+1}\otimes\cdots\otimes\mathbb{C}^{2s_k+1}$.

- $\operatorname{End}_{U_q(\mathfrak{sl}_2)}((\mathbb{C}^2)^{\otimes k}) \cong TL_k \text{ (spins } \frac{1}{2})$
- End $_{U_q(\mathfrak{sl}_2)}((\mathbb{C}^3)^{\otimes k})\cong$ quotient of BMW_k (spins 1) Non-trivial kernel for k>3 generated by a quasi-idempotent in BMW_4 . [Lehrer, Zhang]
- End $_{U_q(\mathfrak{sl}_2)}((\mathbb{C}^{2s+1})^{\otimes k})\cong$ quotient of braid group algebra \mathcal{B}_k . In general, kernel not known.
- End $_{U_q(\mathfrak{sl}_2)}((\mathbb{C}^{2s_1+1})\otimes (\mathbb{C}^{2s_2+1})\otimes (\mathbb{C}^{2s_3+1}))\cong$ quotient of Askey–Wilson algebra AW(3). Conjecture for the kernel. [Crampé, Vinet, Z.]

In particular,

$$Z_{\mathsf{s}} := \mathsf{End}_{U_{\sigma}(\mathfrak{sl}_2)}((\mathbb{C}^{2s+1})^{\otimes 3})$$

is a quotient of both \mathcal{B}_3 and AW(3).

5 / 23

Pirsa: 23090099 Page 7/28

Braid group algebra and its quotients

 \mathcal{B}_k has invertible generators σ_i for $i=1,2,\ldots,k-1$ with relations

$$\sigma_i \sigma_j = \sigma_j \sigma_i,$$
 $|i - j| > 1,$ $\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1},$ $1 \le i \le k-2.$

$$\sigma_i = \bigcap_{1 \dots i} \bigcap_{j=i+1} \bigcap_{k} , \qquad \sigma_i^{-1} = \bigcap_{1 \dots i} \bigcap_{j=i+1} \bigcap_{k} \bigcap_{k} \bigcap_{j=i+1} \bigcap_{j=i+$$

- Knot theory, link invariants, TQFT;
- Yang-Baxter operator representations. Braid generators represented by R-matrices $R_{i,i+1}$.
- Integrable systems, statistical mechanics.

Surjective map $\mathcal{B}_k \to \operatorname{End}_{U_q(\mathfrak{sl}_2)}((\mathbb{C}^{2s+1})^{\otimes k}).$

6/23

7 / 23

Askey-Wilson algebra

- AW polynomials: q-hypergeometric orthogonal polynomials.
 Discrete version: q-Racah polynomials.
- Top of *q*-Askey scheme. (classical OPs)
- Recurrence and q-difference operators satisfy AW(3) algebra. [Zhedanov]

$$\mu(x)p_n(\mu(x)) = A_n p_{n+1}(\mu(x)) + B_n p_n(\mu(x)) + C_n p_{n-1}(\mu(x))$$
$$\lambda_n p_n(\mu(x)) = A(x)p_n(\mu(x+1)) + B(x)p_n(\mu(x)) + C(x)p_n(\mu(x-1))$$

Pirsa: 23090099

8 / 23

• Racah problem for $U_q(\mathfrak{sl}_2)$:

$$(j_1\otimes j_2)\otimes j_3=j_1\otimes (j_2\otimes j_3)$$

Change of basis coefficients are q-Racah polynomials. Racah coefficients, 6j-symbols.

• AW(3) is realized as the diagonal centralizer of $U_q(\mathfrak{sl}_2)$ in $U_q(\mathfrak{sl}_2)^{\otimes 3}$. Generators of AW(3) mapped to intermediate Casimir elements for $U_q(\mathfrak{sl}_2)$: C_{12} , C_{23} , C_{13} and central elements C_1 , C_2 , C_3 , C_{123} .

Surjective map $AW(3) \to \operatorname{End}_{U_q(\mathfrak{sl}_2)}(\mathbb{C}^{2j_1+1} \otimes \mathbb{C}^{2j_2+1} \otimes \mathbb{C}^{2j_3+1}).$

9 / 23

We will consider a specialization of AW(3) corresponding to $j_1 = j_2 = j_3$.

It is generated by three elements A, B, C and central element κ

$$\frac{[A,B]_q}{q^2-q^{-2}}+C=\frac{[C,A]_q}{q^2-q^{-2}}+B=\frac{[B,C]_q}{q^2-q^{-2}}+A=\frac{\chi_s}{\chi_0}(\kappa+\chi_s)$$

$$[X,Y]_q = qXY - q^{-1}YX$$

$$\chi_s := q^{2s+1} + q^{-2s-1}$$

There is a central element $\Omega \in AW(3)$, polynomial in A, B, C, κ .

$$\Omega = \chi_s(\kappa + \chi_s)(qA + q^{-1}B + qC) - q^2A^2 - q^{-2}B^2 - q^2C^2 - qABC.$$

Special Askey-Wilson algebra:

$$\Omega = \kappa(\kappa + \chi_s^3) + 3\chi_s^2 - \chi_0.$$

10/23

Objective

Objective:

Find an explicit algebraic description of centralizer Z_s , for any spin s, by combining braid group and Askey–Wilson algebra relations.

11 / 23

Pirsa: 23090099 Page 13/28

Centralizers of $U_q(\mathfrak{sl}_2)$

Suppose *q* not root of unity.

Spin irreps V_s of dimension 2s+1 ($V_s\cong \mathbb{C}^{2s+1}$). Representation $U_q(\mathfrak{sl}_2)\to \operatorname{End}(V_s)\sim (2s+1)\times (2s+1)$ matrices.

Can act on tensor products using coproduct,

$$\Delta:U_q(\mathfrak{sl}_2) o U_q(\mathfrak{sl}_2)\otimes U_q(\mathfrak{sl}_2)$$

$$U_q(\mathfrak{sl}_2) o \mathsf{End}(\mathit{V_s} \otimes \mathit{V_s} \otimes \mathit{V_s})$$

Question: What elements in $\operatorname{End}(V_s^{\otimes 3})$ commute with action of $U_q(\mathfrak{sl}_2)$? The set of all such elements is the centralizer Z_s .

12/23

Pirsa: 23090099 Page 14/28

Twofold tensor product

Tensor product decomposition of $U_q(\mathfrak{sl}_2)$ irreps:

$$V_s\otimes V_s\cong \bigoplus_{r=0}^{2s}V_r.$$

Example

For $s = \frac{1}{2}$,

$$V_{\frac{1}{2}}\otimes V_{\frac{1}{2}}\cong V_0\oplus V_1.$$

If $X \in U_q(\mathfrak{sl}_2)$, this means that there is a basis such that

$$X \mapsto \left(egin{array}{c|cc} X_0 & 0 & & & \\ \hline 0 & X_1 & & & \\ \hline & & & & * & * \\ \hline & & & * & * & * \\ \hline & & & * & * & * \\ \hline & & * & * & * \\ \hline & * & * & * \end{array}
ight).$$

 $E^{(r)} := \text{projector on the irrep } V_r \text{ for } r = 0, 1, \dots, 2s.$

13 / 23

Threefold tensor product

$$V_s\otimes V_s\otimes V_s\cong igoplus_{j=j_{\min}}^{3s}V_j^{\oplus d_j}, \qquad j_{\min}=0 ext{ or } rac{1}{2}.$$

 d_i : degeneracies

Example

$$V_{\frac{1}{2}} \otimes V_{\frac{1}{2}} \otimes V_{\frac{1}{2}} \cong V_{\frac{1}{2}}^{\oplus 2} \oplus V_{\frac{3}{2}} = V_{\frac{1}{2}} \oplus V_{\frac{1}{2}} \oplus V_{\frac{3}{2}}.$$

$$X \mapsto \begin{pmatrix} \begin{array}{c|c} X_{\frac{1}{2}} & 0 \\ \hline 0 & X_{\frac{1}{2}} \\ \hline 0 & X_{\frac{3}{2}} \end{pmatrix}$$

$$\dim(Z_s) = \sum_{j=j_{\min}}^{3s} d_j^2 = \frac{1}{2}(2s+1)((2s+1)^2+1)$$

14 / 23

R-matrix

There is a universal R-matrix $\mathcal{R} \in U_q(\mathfrak{sl}_2) \otimes U_q(\mathfrak{sl}_2)$.

From this, one can construct the braided R-matrix $\check{R} \in \operatorname{End}(V_s \otimes V_s)$.

 \check{R} is a matrix that commutes with the action of $U_q(\mathfrak{sl}_2)$ on $V_s\otimes V_s$.

$$\check{R} = \bigoplus_{r=0}^{2s} q_r \operatorname{Id}_{V_r} = \sum_{r=0}^{2s} q_r E^{(r)}, \qquad q_r = (-1)^r q^{r(r+1)}.$$

Define $\check{R}_{12} := \check{R} \otimes \operatorname{Id}_{V_s}$ and $\check{R}_{23} := \operatorname{Id}_{V_s} \otimes \check{R}$.

These clearly belong to Z_s (commute with action of $U_q(\mathfrak{sl}_2)$ on $V_s^{\otimes 3}$).

In fact, \check{R}_{12} and \check{R}_{23} generate Z_s .

15/23

Pirsa: 23090099 Page 17/28

R-matrix

There is a universal R-matrix $\mathcal{R} \in U_q(\mathfrak{sl}_2) \otimes U_q(\mathfrak{sl}_2)$.

From this, one can construct the braided R-matrix $\check{R} \in \operatorname{End}(V_s \otimes V_s)$.

 \check{R} is a matrix that commutes with the action of $U_q(\mathfrak{sl}_2)$ on $V_s\otimes V_s$.

$$\check{R} = \bigoplus_{r=0}^{2s} q_r \operatorname{Id}_{V_r} = \sum_{r=0}^{2s} q_r E^{(r)}, \qquad q_r = (-1)^r q^{r(r+1)}.$$

Define $\check{R}_{12} := \check{R} \otimes \operatorname{Id}_{V_s}$ and $\check{R}_{23} := \operatorname{Id}_{V_s} \otimes \check{R}$.

These clearly belong to Z_s (commute with action of $U_q(\mathfrak{sl}_2)$ on $V_s^{\otimes 3}$).

In fact, \check{R}_{12} and \check{R}_{23} generate Z_s .

They satisfy the braided Yang-Baxter equation

$$\check{R}_{12}\check{R}_{23}\check{R}_{12}=\check{R}_{23}\check{R}_{12}\check{R}_{23}.$$

15/23

Pirsa: 23090099 Page 18/28

Starting point for the algebraic description of Z_S

1 \mathcal{B}_3 : invertible generators σ_1, σ_2 with braid relation

$$\sigma_1\sigma_2\sigma_1=\sigma_2\sigma_1\sigma_2$$
.

 \mathbb{Z} $\mathcal{B}_3^s(q)$: add characteristic equations

$$\prod_{p=0}^{2s} (\sigma_i - q_p) = 0$$
, for $i = 1, 2$.

Define idempotents for r = 0, 1, ..., 2s and i = 1, 2

$$e_i^{(r)} := \prod_{\stackrel{p=0}{p
eq r}}^{2s} rac{\sigma_i - q_p}{q_r - q_p}.$$

$$\sigma_i = \sum_{r=0}^{2s} q_r e_i^{(r)}.$$

16/23

Intermediate Casimir elements

There is a Casimir element in $U_q(\mathfrak{sl}_2)$. Acts as $\chi_s \operatorname{Id}_{V_s}$ on V_s .

Its action on $V_s \otimes V_s$ is some matrix $C \in \text{End}(V_s \otimes V_s)$.

C is a matrix that commutes with the action of $U_q(\mathfrak{sl}_2)$ on $V_s \otimes V_s$.

$$C = \bigoplus_{r=0}^{2s} \chi_r \operatorname{Id}_{V_r} = \sum_{r=0}^{2s} \chi_r E^{(r)}.$$

Define $C_{12}:=C\otimes \operatorname{Id}_{V_s}$ and $C_{23}:=\operatorname{Id}_{V_s}\otimes C$. These generate Z_s .

Define $C_{13} := \check{R}_{12}C_{23}\check{R}_{12}^{-1} = \check{R}_{23}^{-1}C_{12}\check{R}_{23}$, and $C_{123} :=$ the Casimir element in End $(V_s^{\otimes 3})$.

The triplet (C_{12}, C_{23}, C_{13}) together with the central element C_{123} satisfy the special AW relations.

17/23

Pirsa: 23090099 Page 20/28

Intermediate Casimir elements

There is a Casimir element in $U_q(\mathfrak{sl}_2)$. Acts as $\chi_s \operatorname{Id}_{V_s}$ on V_s .

Its action on $V_s \otimes V_s$ is some matrix $C \in \text{End}(V_s \otimes V_s)$.

C is a matrix that commutes with the action of $U_q(\mathfrak{sl}_2)$ on $V_s \otimes V_s$.

$$C = \bigoplus_{r=0}^{2s} \chi_r \operatorname{Id}_{V_r} = \sum_{r=0}^{2s} \chi_r E^{(r)}.$$

Define $C_{12}:=C\otimes \operatorname{Id}_{V_s}$ and $C_{23}:=\operatorname{Id}_{V_s}\otimes C$. These generate Z_s .

Define $C_{13} := \check{R}_{12}C_{23}\check{R}_{12}^{-1} = \check{R}_{23}^{-1}C_{12}\check{R}_{23}$, and $C_{123} :=$ the Casimir element in $\operatorname{End}(V_s^{\otimes 3})$.

The triplet (C_{12}, C_{23}, C_{13}) together with the central element C_{123} satisfy the special AW relations.

$$\frac{[C_{12},C_{23}]_q}{q^2-q^{-2}}+\check{R}_{12}C_{23}\check{R}_{12}^{-1}=\frac{\chi_s}{\chi_0}(C_{123}+\chi_s\mathrm{Id}_{V_s^{\otimes 3}}).$$

17 / 23

Pirsa: 23090099 Page 21/28

Askey-Wilson braid algebra

3 $AWB_3^s(q)$: Define elements

$$g_i = \sum_{r=0}^{2s} \chi_r e_i^{(r)}, \quad \text{for } i = 1, 2.$$

Impose AW relations for the triplet $(g_1, g_2, \sigma_1 g_2 \sigma_1^{-1})$.

$$\frac{[g_1, g_2]_q}{q^2 - q^{-2}} + \sigma_1 g_2 \sigma_1^{-1} = \frac{[\sigma_1 g_2 \sigma_1^{-1}, g_1]_q}{q^2 - q^{-2}} + g_2 = \frac{[g_2, \sigma_1 g_2 \sigma_1^{-1}]_q}{q^2 - q^{-2}} + g_1 \\
=: \frac{\chi_s}{\chi_0} (\kappa + \chi_s).$$

4 Special $AWB_3^s(q)$: Impose special relation for central element Ω.

$$\Omega = \kappa(\kappa + \chi_s^3) + 3\chi_s^2 - \chi_0.$$

18 / 23

Final quotient

5 A_s : add relation

$$e_1^{(0)}g_2e_1^{(0)}=rac{\chi_s^2}{\chi_0}e_1^{(0)}.$$

Claim: $A_s \cong Z_s$.

Some remarks:

- \mathcal{A}_s generated by σ_1, σ_2 or g_1, g_2 or $e_1^{(r)}, e_2^{(r)}$ for $r = 0, 1, \ldots, 2s$.
- Characteristic equations for g_i

$$\prod_{p=0}^{2s} (g_i - \chi_p) = 0, \quad \text{for } i = 1, 2.$$

• Step 5: equivalent to adding

$$\kappa e_1^{(0)} = \chi_s e_1^{(0)}.$$

19/23

Isomorphism

 A_s has been constructed such that we have a **homomorphism** with the centralizer Z_s (mapping $A_s \to Z_s$ that preserves relations).

$$\sigma_1 \mapsto \check{R}_{12}, \quad \sigma_2 \mapsto \check{R}_{23},$$
 $g_1 \mapsto C_{12}, \quad g_2 \mapsto C_{23}, \quad \sigma_1 g_2 \sigma_1^{-1} \mapsto C_{13}, \quad \kappa \mapsto C_{123},$ $e_1^{(r)} \mapsto E_{12}^{(r)}, \quad e_2^{(r)} \mapsto E_{23}^{(r)}.$

It is **surjective** because the centralizer Z_s is generated by \check{R}_{12} , \check{R}_{23} (or C_{12} , C_{23} or projectors $E_{12}^{(r)}$, $E_{23}^{(r)}$).

This means that $\dim(\mathcal{A}_s) \geq \dim(Z_s)$.

The complicated part is to show that it is **injective** (no other relations are required).

20 / 23

Pirsa: 23090099 Page 24/28

Isomorphism

 A_s has been constructed such that we have a **homomorphism** with the centralizer Z_s (mapping $A_s \to Z_s$ that preserves relations).

$$\sigma_1 \mapsto \check{R}_{12}, \quad \sigma_2 \mapsto \check{R}_{23},$$
 $g_1 \mapsto C_{12}, \quad g_2 \mapsto C_{23}, \quad \sigma_1 g_2 \sigma_1^{-1} \mapsto C_{13}, \quad \kappa \mapsto C_{123},$ $e_1^{(r)} \mapsto E_{12}^{(r)}, \quad e_2^{(r)} \mapsto E_{23}^{(r)}.$

It is **surjective** because the centralizer Z_s is generated by \check{R}_{12} , \check{R}_{23} (or C_{12} , C_{23} or projectors $E_{12}^{(r)}$, $E_{23}^{(r)}$).

This means that $\dim(\mathcal{A}_s) \geq \dim(Z_s)$.

The complicated part is to show that it is **injective** (no other relations are required).

Suffice to show that $\dim(A_s) \leq \dim(Z_s)$.

20 / 23

Pirsa: 23090099 Page 25/28

Injectivity

The idea is to find a spanning set for A_s with cardinality = dim(Z_s).

This spanning set will therefore be a basis for $A_s \cong Z_s$.

Outline

• PBW basis for AW(3), and $\sigma_1 g_2 \sigma_1^{-1} = \sigma_2^{-1} g_1 \sigma_2$

$$\{g_1^a g_2^b (\sigma_2^{-1} g_1 \sigma_2)^c \kappa^p \mid a, b, c, p \in \mathbb{N}\}$$

• Characteristic polynomials for g_1 and g_2

$$\{g_1^a g_2^b \sigma_2^{-1} g_1^c \sigma_2 \kappa^p \mid 0 \le a, b, c \le 2s, \ p \in \mathbb{N}\}$$

• $g_1^a \to e_1^{(a)}$, $g_2^b \sigma_2^{-1} \to g_2^b$, $g_1^c \to e_1^{(c)}$, σ_2 invertible, κ central

$$\{e_1^{(a)}g_2^be_1^{(c)}\kappa^p \mid 0 \le a, b, c \le 2s, \ p \in \mathbb{N}\}$$

21/23

Pirsa: 23090099 Page 26/28

• AW(3) relations imply

$$e_1^{(a)}g_2^b e_1^{(c)} = 0 \quad \text{if } |a-c| > b.$$

$$\{e_1^{(a)}g_2^b e_1^{(c)} \kappa^p \mid 0 \le a, c \le 2s, \ |a-c| \le b \le 2s, \ p \in \mathbb{N}\}$$

• Special AW(3) relations imply

$$e_1^{(a)}g_2^{|a-c|+n}e_1^{(c)} = P_n^{(a,c)}(\kappa)e_1^{(a)}g_2^{|a-c|}e_1^{(c)}$$
$$\{e_1^{(a)}g_2^{|a-c|}e_1^{(c)}\kappa^p \mid 0 \le a, c \le 2s, \ p \in \mathbb{N}\}$$

• braid + special AW(3) + final relation imply

$$\prod_{r=|a-s|}^{a+s} (\kappa - \chi_r) e_1^{(a)} = 0.$$

$$\{e_1^{(a)}g_2^{|a-c|}e_1^{(c)}\kappa^p \mid 0 \le a, c \le 2s, \ 0 \le p \le n(a,c)\}$$

This set has cardinality $= \dim(Z_s) \Rightarrow A_s \cong Z_s$.

22 / 23

Conclusion

Summary

- Algebraic description of the centralizer of $U_q(\mathfrak{sl}_2)$ in the tensor product of 3 identical copies of spin-s irrep, for any s.
- Combine braid group relations on 3 strands with special AW(3).

Some perspectives

- n copies: \mathcal{B}_n and higher rank AW(n).
- *q* root of unity?

Pirsa: 23090099

23 / 23