Title: Dissipative State Preparation and the Dissipative Quantum Eigensolver

Speakers: Toby Cubitt

Series: Perimeter Institute Quantum Discussions

Date: September 13, 2023 - 11:00 AM

URL: https://pirsa.org/23090093

Abstract: Finding ground states of quantum many-body systems is one of the most important---and one of the most notoriously difficult---problems in physics, both in scientific research and in practical applications. Indeed, we know from a complexity-theoretic perspective that all methods (quantum or classical) must necessarily fail to find the ground state efficiently in general. The ground state energy problem is already NP-hard even for classical, frustration-free, local Hamiltonians with constant spectral gap. For general quantum Hamiltonians, the problem becomes QMA-hard.

Nonetheless, as ground state problems are of such importance, and classical algorithms are often successful despite the theoretical exponential worst-case complexity, a number of quantum algorithms for the ground state problem have been proposed and studied. From quantum phase estimation-based methods, to adiabatic state preparation, to dissipative state engineering, to the variation quantum eigensolver (VQE), to quantum/probabilistic imaginary-time evolution (QITE/PITE).

Dissipative state engineering was first introduced in 2009 by Verstraete, Cirac and Wolf and by Kraus et al. However, it only works for the restricted class of frustration-free Hamiltonians.

In this talk, I will show how to construct a dissipative state preparation dynamics that provably produces the correct ground state for arbitrary Hamiltonians, including frustrated ones. This leads to a new quantum algorithm for preparing ground states: the Dissipative Quantum Eigensolver (DQE). DQE has a number of interesting advantages over previous ground state preparation algorithms:

o The entire algorithm consists simply of iterating the same set of simple local measurements repeatedly.

o The expected overlap with the ground state increases monotonically with the length of time this process is allowed to run.

o It converges to the ground state subspace unconditionally, without any assumptions on or prior information about the Hamiltonian (such as spectral gap or ground state energy bound).

o The algorithm does not require any variational optimisation over parameters.

o It is often able to find the ground state in low circuit depth in practice.

o It has a simple implementation on certain types of quantum hardware, in particular photonic quantum computers.

o It is immune to errors in the initial state.

o It is inherently fault-resilient, without incurring any fault-tolerance overhead. I.e.\ not only is it resilient to errors on the quantum state, but also to faulty implementations of the algorithm itself; the overlap of the output with the ground state subspace degrades smoothly with the error rate, independent of the total run-time.

I give a mathematically rigorous analysis of the DQE algorithm and proofs of all the above properties, using non-commutative generalisations of methods from classical probability theory.

Zoom link https://pitp.zoom.us/j/96022753460?pwd=SWlUVkVta1RyY3dsWUJWckRqOHdNdz09

PHASECRAFT

Dissipative Ground State Preparation & the Dissipative Quantum Eigensolver Toby Cubitt [arXiv: 2303. 11962]

THE QUANTUM ALGORITHMS COMPANY

PHASECRAFT

Ashley Montanaro

John , Morton

Toby Cubitt

Ground State Problem

Input: (Description of) k-local Hamiltonian $H = \sum_{i=1}^{m} h_i$ h: k-Local Output: $H | \Psi_o \rangle = \lambda_{min} | \Psi_o \rangle$ $|\tilde{\psi}\rangle$ s.t. $\||\tilde{\psi}\rangle - |\tilde{\psi}\rangle\| \leq \varepsilon$

Ground State Problem

Ground State Problem

QMA-hard \rightarrow exponential time even on guantum computer

Physical assumptions on H do <u>not</u> make ground state problem easy:

- Frustration -free
- · Constant spectral gap
- · commuting local terms
- Polynomial density of states

 \rightarrow still NP-hard.

Algorithm	Adiabatic QPE	<i>i</i> -time	VQE
No conditions on H			\checkmark
Provably succeeds	\checkmark	\checkmark	
Low-depth in practice			\checkmark
No parameter optimisation	\checkmark	\checkmark	
Efficient to generate multiple copies			\checkmark
Convenient implementation			\checkmark
Insensitive to initial state			
Noise- and fault-resilient			

Algorithm	Adiabatic QPE	<i>i</i> -time	VQE	Dissipative
No conditions on H			\checkmark	
Provably succeeds	\checkmark	\checkmark		\checkmark
Low-depth in practice			\checkmark	
No parameter optimisation	\checkmark	\checkmark		\checkmark
Efficient to generate multiple copies			\checkmark	
Convenient implementation			\checkmark	\checkmark
Insensitive to initial state				\checkmark
Noise- and fault-resilient				\checkmark^1

Dissipative state engineering & quantum computation

Dissipative ...

- · ground state engineering
- MPS / PEPS / stabilizer state engineering

· Quantum computation

[VWC '09]

Dissipative state engineering & quantum computation

Dissipative ...

ground state engineering

 → exp-time

[VWC '09]

Dissipative state engineering
Def. Frustration-free

$$H = \sum_{i} h_{i}$$
 $H | \Psi_{o} \rangle = \lambda_{min}(H) | \Psi_{o} \rangle$
 $h_{i} | \Psi_{o} \rangle = \lambda_{min}(h_{i}) | \Psi_{o} \rangle$
For H frustration-free:
 $H = \sum_{i} h_{i} \longrightarrow H = \sum_{i} TT_{i}$ w.l.o.g.

Dissipative state engineering

$$H = \sum_{i=1}^{m} \pi_{i} \qquad n \text{ gubits, } \dim = 2^{n} =: D$$

$$E(\rho) = \frac{1}{m} \sum_{i=1}^{m} (\pi_{i} \rho \pi_{i} + (1 - tr(\pi_{i} \rho))^{\frac{1}{2}}))$$
1. Pick random $i \in \{1, ..., m\}$
2. Measure $\{\pi_{i}, \pi_{i}^{-1}\}$
3. On π_{i}^{\perp} outcome, replace state with maximally-mixed state

Dissipative state engineering

$$H = \sum_{i=1}^{m} TT_i \qquad n \text{ qubits}, \quad \dim = 2^n =: D$$

$$\varepsilon(\rho) = \frac{1}{m} \sum_{i=1}^{m} \left(TT_i \rho TT_i + (1 - tr(TT_i \rho)) \frac{U}{D} \right)$$
1. Pick random $i \in \varepsilon 1, ..., m$
2. Measure $\varepsilon TT_i, TT_i^{\perp}$ $\longrightarrow tr(\varepsilon^{\infty}(\rho)TT_o) = 1$
3. On TT_i^{\perp} outcome, replace state with maximally-mixed state

Dissipative state engineering

Advantages:

- · Simple, local procedure
- · Succeeds independent of initial state
- Succeeds even if state hit by errors during computation (but only proven for error <u>rate</u> =0)

Dissipative state engineering

Advantages:

- · Simple, local procedure
- · Succeeds independent of initial state
- Succeeds even if state hit by errors during computation (but only proven for error <u>rate</u> =0)

Algorithm	Adiabatic	QPE	<i>i</i> -time	VQE	Dissipative	DQE
No conditions on H				\checkmark		\checkmark
Provably succeeds		\checkmark	\checkmark		\checkmark	\checkmark
Low-depth in practice				\checkmark		\checkmark
No parameter optimisation	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
Efficient to generate multiple copies				\checkmark		
Convenient implementation				\checkmark	\checkmark	\checkmark
Insensitive to initial state					\checkmark	\checkmark
Noise- and fault-resilient					\checkmark^1	\checkmark

Dissipative Quantum Eigensolver

Dissipative Quantum Eigensolver

2. Make use of information from measurement outcomes.

Approximate Ground State Projectors Def. AGSP K Hermitian is $(\Delta, \Gamma, \varepsilon)$ - AGSP for Π_0 if (;) $[k, \pi] = 0$ (ii) $k\pi \ge \sqrt{\Gamma}\pi$ $(iii) k \pi^{+} \leq \sqrt{\Delta} \pi$ (iv) $\| \Pi - \Pi \| \leq \varepsilon$

(ef. [AKLV '13])

Approximate Ground State Projectors

$$H = \sum_{i=1}^{m} h_i, \quad H T_o = \lambda_{min} T_o$$

$$\frac{Lem}{K} = \prod_{i=1}^{m} \left((1 - \varepsilon) \mathcal{I} + \varepsilon K_i k_i \right) \prod_{i=m}^{7} \left((1 - \varepsilon) \mathcal{I} + \varepsilon K_i k_i \right)$$
is a $(\Gamma, \Delta, o(\varepsilon^2)) - AGSP$ for TT_o , where
 $k_i = \frac{1}{\varepsilon} (\mathcal{I} - h_i / \|h_i\|), \quad k_i = \sum_{i=1}^{m} \|h_i\| / K_i$
 $\Gamma = (1 - \varepsilon)^{2m-1} \left(1 - \frac{\varepsilon \lambda_0}{K} \right) - O(\varepsilon^2)$

Approximate Ground State Projectors AGSP K can be implemented by local measurements. K;

$$K = \prod_{\substack{i=1\\i=1}}^{n} \left((1-\varepsilon) \mathcal{I} + \varepsilon K_i k_i \right) \prod_{\substack{i=n\\i=n}}^{n} \left((1-\varepsilon) \mathcal{I} + \varepsilon K_i k_i \right)$$

$$= \prod_{\substack{i=1\\i=n}}^{n} K_i \prod_{\substack{i=n\\i=n}}^{n} K_i$$

Weak-measure each (suitably normalised) Local term in Hamiltonian in turn —> K if obtain all "(1-E)] + EK:K: outcomes.

Conditionally stopped process Quantum instrument { Eo, E, } $\mathcal{E}_{o}(\rho) = K_{\rho}k^{\dagger}, \quad \mathcal{E}_{i}(\rho) = (1 - t_{r}(K_{\rho}k^{\dagger}))^{\mu}$ Iterate instrument starting from $p = \frac{1}{D}$ until obtain n "O" s $\rightarrow p_n$. Thm. $\frac{1}{r}\left(\Pi_{o}\rho_{n}\right) \geq 1-\varepsilon - \frac{D}{N}\left(\frac{\Delta}{r}\right)^{n}$ D:= total dim., N:= to TTo = g.s. degeneracy

Conditionally stopped process

$$\frac{Thm.}{tr} (\Pi_{0} \rho_{n}) \ge 1 - \varepsilon - \frac{D}{N} \left(\frac{\Delta}{r}\right)^{n}$$

$$\frac{Pf.}{Recall [k, \Pi] = 0, \quad \|\Pi - \Pi_{0}\| \le \varepsilon \quad (Def. \ AGSP)$$

$$tr(\Pi \ k^{n}\rho k^{n}) = tr((k \pi)^{n}\rho(k \pi)^{n}) \ge \Gamma^{n} tr \Pi \rho.$$
Similarly, $tr(\Pi^{+} k^{n}\rho k^{n}) \le \Delta^{n}(1 - tr \Pi \rho).$

Conditionally stopped process

$$P_{n} = \frac{\varepsilon_{o}^{\circ}(\rho)}{\varepsilon_{o}^{\circ}(\rho)} = \frac{k^{n}\rho k^{n}}{\varepsilon(k^{n}\rho k^{n})}$$

$$t (\pi p_{n}) = \frac{t (\pi k^{n}\rho k^{n})}{t (k^{n}\rho k^{n})}$$

$$= 1 - \frac{t (\pi^{+}k^{n}\rho k^{n})}{t (\pi k^{n}\rho k^{n}) + t (\pi^{+}k^{n}\rho k^{n})}$$

$$\geq 1 - \frac{\Delta^{n}(1 - t \pi p)}{\Gamma^{n} t \pi p} \qquad \text{by ineqs.}$$

Conditionally stopped process

$$tr TT \rho_{0} = tr TT \stackrel{1}{\to} = \stackrel{N}{\to}$$

$$tr TT \rho_{n} \ge 1 - \frac{1 - tr TT \rho_{0}}{tr TT \rho_{0}} \left(\stackrel{\Delta}{\Gamma} \right)^{n} \ge 1 - \frac{D}{N} \left(\stackrel{\Delta}{\Gamma} \right)^{n}$$

$$tr T_{0} \rho_{n} \ge tr TT \rho - \varepsilon \qquad \|TT - TT_{0}\| \le \varepsilon$$

$$pef. \quad AGSP$$

$$= 1 - \varepsilon - \stackrel{D}{\to} \left(\stackrel{\Delta}{\Gamma} \right)^{n}$$

Conditionally stopped process

$$\begin{aligned} & \mathcal{E}_{o}(p) = K_{p}k^{\dagger}, \quad \mathcal{E}_{1}(p) = (1 - tr(K_{p}k^{\dagger})) \stackrel{1}{\mathcal{D}} \\ & \mathcal{P}_{o} = \stackrel{1}{\mathcal{D}} \\ & \mathcal{P}_{o} = \stackrel{1}{\mathcal{D}} \\ & \text{, iterate until n "O`s.} \end{aligned}$$

$$\begin{aligned} & \underbrace{Thm.}{T_{n} := stopping time} = \# \text{ iterations until run of n zeros} \\ & \underbrace{Expected stopping time}_{rec} = \# \text{ iterations until run of n zeros} \\ & \underbrace{E(T_{n}) = \frac{1}{t_{r}(k^{2n})} tr\left(\frac{1 - k^{2n}}{1 - k^{2}}\right) \leq \frac{1}{\Gamma^{n}}\left(n + \frac{1 - \Delta^{n}}{1 - \Delta}\left(\frac{D}{N} - 1\right)\right) \end{aligned}$$

Conditionally stopped process

PF.

- Imagine betting on sequence of 0/1 outcomes according to following strategy:

 At time step t, bet all winnings so far
 + additional £t on "0", at fair odds.
 - Outcome "0" \rightarrow get back stake x odds.
 - Outcome "1" lose entire stake.

Conditionally stopped process $X_t := t' th 0/1 out come$ Random vars M_t : = net winnings at time t $M_{o} = 0$ X, = 0 $X_t = 1$

V

$$\Rightarrow \mathbb{E}(M_{\tau_n}) \text{ is also a Martingale (Doob's optional)} \\ \Rightarrow \mathbb{E}(M_{\tau_n}) = \mathbb{E}(M_o)$$

Conditionally stopped process
Reset state to
$$\frac{1}{D}$$
 after a "1"
 \Rightarrow state at run of k "0"s is
 $P_{k} = \frac{k^{k} \frac{1}{D} k^{k}}{tr(--)} = \frac{k^{2k}}{tr(k^{2k})}$

Conditionally stopped process
Reset state to
$$\frac{1}{2}$$
 after a "1"
 \Rightarrow state at run of k "0"s is
 $P_{k} = \frac{k^{k} \frac{1}{2}}{tr(--)} = \frac{k^{2k}}{tr(k^{2k})}$
 $P_{r}(010^{k}1...) = \frac{tr(k P_{k} k)}{tr(k^{2k})}$

Conditionally stopped process

$$E(\mathcal{M}_{\mathcal{T}_n}) = \frac{1}{t(k^{2n})} t\left(\frac{1-k^{2n}}{1-k^2}\right) - E(\mathcal{T}_n)$$
o from previously

Conditionally stopped process

$$O = \frac{1}{t(k^{2n})} tr\left(\frac{1-k^{2n}}{1-k^{2}}\right) - E(T_n)$$

Rearranging:

$$E(T_n) = \frac{1}{t_r(k^{2n})} t_r\left(\frac{1-k^{2n}}{1-k^2}\right)$$

Conditionally stopped process

$$O = \frac{1}{t(k^{2n})} tr\left(\frac{1-k^{2n}}{1-k^{2}}\right) - E(T_n)$$

Rearranging:

$$E(\mathcal{T}_{n}) = \frac{1}{t + (k^{2n})} t \left(\frac{1 - k^{2n}}{1 - k^{2}}\right)$$

$$\leq \frac{1}{\Gamma^{n}} \left(n + \frac{1 - \Delta^{n}}{1 - \Delta} \left(\frac{D}{N} - 1\right)\right) E$$

Epsilon Schedules Thm. $tr(\Pi_{o}\rho_{n}) \geq 1-\epsilon - \frac{D}{N}\left(\frac{\Delta}{\Gamma}\right)^{n}$ $\Gamma = (1-\epsilon)^{2m-1} (1-\frac{\epsilon \lambda_{1}}{\kappa}) + O(\epsilon^{2})$ $\Delta = (1 - \epsilon)^{2m-1} (1 - \epsilon^{\lambda_0} / k) - O(\epsilon^2)$

Epsilon Schedules

Solution: choose et decreasing with t. {Eo, E, }, stop after n "O"s $= \frac{\epsilon_0}{t-t_1} \quad \text{where} \quad t_1 = t \text{ ime of last "1"}$ Pn = stopping state $\lim_{n \to \infty} tr(\pi_{o,p_n}) = 1.$

Epsilon Schedules
Thm. lim tr
$$(TT_0 p_n) = 1$$
.
 $n \rightarrow \infty$ harmonic series
is divergent
 $Pf.$ (intuition) \Rightarrow product convergence
 $\circ Once e_t <<\lambda_1 - \lambda_0 \rightarrow convergence \sim TT(1-\frac{\epsilon}{t}) \rightarrow 0$
 t
 t Error accumulated up to that point
 $\sim \sum_{t=t^2} \frac{1}{TT} (1-\frac{\epsilon}{s})^{-1} \le e^{2\epsilon} S(2(1-\epsilon)) = O(1).$

Epsilon Schedules
Thm. lim tr
$$(TT_0 p_n) = 1$$
.
 $n \rightarrow \infty$ harmonic series
is divergent
 $Pf.$ (intuition) \Rightarrow product convergent
 $\circ Once e_t <<\lambda_1 - \lambda_0 \rightarrow convergence \sim TT(1-\frac{c}{t}) \rightarrow 0$
 t
 $TT, \Delta, O(e^1) - AGSP$
 $\cdot Error accumulated up to that point
 $\sim \sum_{t=t^2}^{1} \frac{t}{t^2} (1-\frac{c}{s})^{t} \le e^{2t} S(2(1-c)) = O(1).$$

Fault - Resilience

· What if errors occur during the process? What if the process itself is implemented using faulty operations? Both possibilities encompassed by: $\{ \mathcal{E}_{0}^{\prime}, \mathcal{E}_{1}^{\prime} \}$ $\{\mathcal{E}_{o}, \mathcal{E}_{i}\}$ 1| ε, - ε, 1, 1 ε, - ε, 1, ≤ ε

Fault - Resilience

Thm.

$$\{ \mathcal{E}_{o}^{\prime}, \mathcal{E}_{1}^{\prime} \} \quad s.t. \quad || \mathcal{E}_{o}^{\prime} - \mathcal{E}_{o} || \leq \delta$$

$$Iterate \quad \{ \mathcal{E}_{o}^{\prime}, \mathcal{E}_{1}^{\prime} \} \quad until \quad run \quad of \quad n \quad "O" s.$$

$$p_{n} = stopping \quad state.$$

$$lim \quad tr \left(\mathcal{T}_{o} p_{n} \right) = 1 - O(\epsilon) + O(\delta)$$

$$n \rightarrow \infty$$

Fault-Resilience
Thm.
$$\lim_{n \to \infty} tr(\Pi_o \rho_n) = 1 - O(\epsilon) + O(s)$$

Pf. (hint)
 $\mathcal{E}_o^n(\rho) \equiv \mathcal{E}_o^n(\rho) \gg$
Non-commutative Perron-Frobenius theory
+ Schur structure of transfer matrix
+ eigenspace perturbation theory

Pirsa: 23090093

Dissipative Gibbs Sampling

- Similar benefits to DQE : simple local procedure, fault-resilience, no complex g. subroutines required (no H. simulation, phase estimation, gubitization, etc.)
- Exact analytic expressions for run-time,
 no hard-to-analyse quanties (e.g. mixing times).

· Optimal (?) run-time scaling with precision.