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Abstract: We study the Petz map, which is a universal recovery channel of atripartite quantum state upon erasing one party, in quantum many-body
systems. The fidelity of the recovered state with the original state quantifies how much information shared by the two partiesis not mediated by one
of the party, and has a universal lower bound in terms of the conditional mutual information (CMI). | will study this quantity in two different
contexts. First, in a CFT ground state, we show that the fidelity is universal, which means it only depends on the central charge and the cross ratio.
We compute this universal function numerically and show that it is consistently better than the naive CMI bound. Secondly, we show that for two
broad classes of the states, the CMI lower bound is saturated. These include stabilizer states (in any dimensions) and the ground state of 2+1D
topological order.

Zoom link: https://pitp.zoom.us/j/926234358397pwd=N1J dkUWWHFkZGpgb1plV3NKYy91QT09
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Quantum entanglement in many-body physics

Quantum phase of matter characterized by different patterns of long-range entanglement

Entanglement entropy is useful to characterize bipartite entanglement

) ap = Z VPili) ali)p

S=-Y pilogp

1+1D CFT ground state: S(A) = %log La +0(1)
' a

2+1D topological order:  S(A) =aly — v
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Operational interpretation of entanglement quantities

* Entanglement entropy quantifies how much Bell pair can be extracted from the state under local
operations and classical communications (* asymptotically per state *)

LOCC ( 1

QN
4 B — (5 (j01) — |10))> N = S(A) = S(B)

* Multipartite entanglement: operational meaning not clear in general.

» We will consider a tripartite entanglement quantity: conditional mutual information

4 B o I(A: C|B) = S(AB) + S(BC) — S(B) — S(ABC)
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CMI in guantum many-body systems

* 2+1D topological order ground state

B

A B e A C
B

I(A: C|B)=0 I(A:C|B) =2y

* 1+1D CFT ground state
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Conditional mutual information

* Mutual information: I(A: B) = S(A) + S(B) — S(AB) >0
Quantifies how much correlations are shared between A and B

Operational meaning: How close we can get to the state with local preparation

I(A: B)= min S(pagl|lpa ® pB)

PAPB
* Conditional mutual information: I(A:C|B)=I(A: BC)—-I(A:B) >0
Quantifies how much correlations are shared between A and C that is not mediated by B

Operational meaning: Petz map recovery (this talk)
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Outline of the talk

* Petz map recovery

* Petz map recovery fidelity in CFT
* Numerical observations
* Analytical treatment using the replica trick

* Petz map recovery fidelity in special many-body states
 Stabilizer state
* Ground state of topological order
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Petz map recovery

TI'C NB—>BC

A B _— A B C

papc =Np_pco(pan)

Operational question: How close* the recovered state can be with the original state?

N:%lij}'ch(ﬁABC: PABC) F(p,o) =Tr ( \/Ep\/E)

*Distance measures of mixed states include fidelity, trace distance and (Renyi-) relative entropy
They bound each other without dimensionality dependence
We will mainly consider fidelity in this talk
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Perfect recovery

Theorem 1 (Petz): ax Fl(o. Aar~) =1 ifandonlyif I(A:C|B) =0
P (PaBc,paBc) ( |B)

N-’\(PAB) _ p%/éﬁ).p}—;l/'z—i,\pABpgl/QH,\pgé—i,\j VA e R

This map only relies on the density matrices on AB and BC

Theorem 2 (Hayden, Winter): I(A: C|B) = 0if and only if there exists a decomposition

Hp = @HB{« %Y (H‘Bf' PABC = ijp,fo ®pprC

J J
This form makes it clear that the correlations between A and C are mediated by B

It also implies that the correlations between A and C are classical
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Approximate recovery

* Theorem 3: (Sutter, Fawzi, Renner) max F(papc,papc) > e~ [(ACIB)/2

N:B—BC

- 1/244N —1/2—4A —1/249X 1/2—4A
papc(N) =N Npag) = pget 052 P pasps T g,

* The following two inequality holds:

—log F(papc(A),pape)) = I(A: C|B)/2 (Average fidelity)
max F(papc(N), papc) > o~ 1(A:C|B)/2  (Best fidelity)
s ABC) =

* This means if the CMI is small, then approximate recovery is possible
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Petz map recovery in quantum many-body systems

The theorem guarantees that a lower bound of the recovery fidelity

However, it does not say how much better we can go beyond the CMI bound

For both 1+1D CFT ground state and 2+1D topological order ground state, the CMI bound contains
universal information

Question 1: Does the best/average recovery fidelity tell us more about universal information?

Question 2: Does the best/average recovery fidelity tell us about the entanglement of the state?

Pirsa: 23090053 Page 11/28



Perfect recovery

Theorem 1 (Petz): ax Fl(o. Aar~) =1 ifandonlyif I(A:C|B) =0
P (PaBc,paBc) ( |B)

N-’\(PAB) _ p%/éﬁ).p}—;l/'z—i,\pABpgl/QH,\pgé—i,\j VA e R

This map only relies on the density matrices on AB and BC

Theorem 2 (Hayden, Winter): I(A: C|B) = 0if and only if there exists a decomposition

Hp = @HB{« %Y (H‘Bf' PABC = ijp,fo ®pprC

J J
This form makes it clear that the correlations between A and C are mediated by B

It also implies that the correlations between A and C are classical
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Main result: 1+1D CFT

The fidelity has a universal form F(jspc(A). pape) = e ¢

fa(n) is theory independent

Best recovery is always achieved by \ = (. Fidelity is significantly better than CMI bound

Average fidelity is better than the CMI bound by a constant factor
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Theory independence

— A =00 /‘ Different markers label three different models
0.4 (Ising, tricritical Ising, free compactified boson)
©
K3
£0.2
1 Numerical data obtained using

Periodic Uniform Matrix Product State for up to N=128

000 025 050 075 1.00
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Approximate recovery

* Theorem 3: (Sutter, Fawzi, Renner) max F(papc,papc) > e~ [(ACIB)/2

N:B—BC

- 1/244N —1/2—4A —1/249X 1/2—4A
papc(N) =N Npag) = pget 052 P pasps T g,

* The following two inequality holds:

—log F(papc(A),pape)) = I(A: C|B)/2 (Average fidelity)
max F(papc(N), papc) > o~ 1(A:C|B)/2  (Best fidelity)
s ABC) =

* This means if the CMI is small, then approximate recovery is possible
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Theory independence

— A =00 /‘ Different markers label three different models
0.4 (Ising, tricritical Ising, free compactified boson)
©
K3
£0.2
1 Numerical data obtained using

Periodic Uniform Matrix Product State for up to N=128

0.00 025 050 075 1.00
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Long B limit

—log F'
» -~ —= —maxlog F’
B —— I(A.C|B))2
102 10! 10°

Ui
—log F ~ 0.055¢n + O(n?)
—maxlog F =~ 0.07en? + O(n?)

I(A:C|B) =
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lUiQ‘ ’#‘P/_'_’_’/
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_ 10~ _7,_,4.--"‘"* A =00
1; e anl A=105
& 1 — e A=10
=10 P r
‘ . e J” A= ]
...... - .-*"r‘—‘
105 7 o
_,.W‘***J_
102 2x 107 3 x 10724 x 1072

4

—log F\x = O(n")

Exponent decreases as |\| increases
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Short B limit

1.10
T,
= : | M
% 1.05 . T
S 1 1 : 2/35
T et g e ——log F = = log +const + O((1 —n)*”) (p—1)
=1.00] A=0 ¢ 9 " 1-n
i A= 05
- 0.05. \ =10 Different )\ differ by the constant term
0.0 0.1 0.2 0.3

Pirsa: 23090053

We will prove this using a replica trick

Page 18/28



Replica trick

F(p,0) = Tv ( \/ao\/E) — Te((po)/?)

We want to compute: FA) — Ty

S

)

L9 peg s 1og
(PBC Pp PABPR

b=

' Phe’ )pABC

|

Replica version:  Fi 1 nomyims =

Tr[(pBerE PABPE PEEPABC)"]

. 1 A I U 1 A 1 A i 1
771-1%5—5, ?’ll—)'—i‘l‘E, m.g—}§+§, 712—)‘—5—3, —>§
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Twist operation formulation

. . m n na  Mme k
Fk,nl M2, my,ma Ty [(pBé.‘pBl pABIUBQ chpABC) ]

RNk _ , :
Fi ny o mime = Tr((pasc) TATBTC), N = (m1+mo+ny+ne+2),7 € Sk
my ny n; my
[ 11 1 [ 11 1
. o000 o900 00 000 00 0 00 00 aee P00 00 000 00
I A
m,y ny n; m;

[ 110 | [ 11
: O 0000 000 00 00 00 00O 0O ) 0.0 00 0 00 00
;K T\f\f\f\f\f\f\f\f\f\/\f\f\f\f\f\f\f\f\f \/’\f\f\f\f\f\f\f\f\f

my; Ny n, Mm;

[ [N 1T I |
. P00 00 000 00 00000 000 00 e 0000 000 00
e T\f\-\_r,;f"\f\f\_/\f'\-\\ﬂ_ﬂfﬁ\f\j \/,\f‘\_ﬂﬂ'\f\;‘
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Twist operator correlation functions

~ Fw |

J L ¥

Pk / Pk / b /
! )J’ = 'i"r(--g i)

= I ETﬁlfA Lizteg Zec
/ -1 X -1 X -1 X
&2 / X1 7, 2 5 3 0 4
b2 /
1 ¢ 1

JC J

xl."l ¢ X, R X ¢ x
.} 1 A CHE AU B i iriin s, = <ET;1(,:C1)ET§1TA (IQ)ETEITB (r3)2.(14))
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Independence of the length scale

Four point function of primary operators depends on the scaling dimensions and OPE

Scaling dimensions of twist operators are completely determined by the cycle decomposition

T

C 1
Ar = 12 Z (ni - n—2> If 7 has m cycles and each cycle length n;

1=1

For the Petz map fidelity, the scaling dimensions all go to zero in the replica limit.

Thus, it is a function of only cross ratio (UV finiteness).
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Independence of the operator content

The manifold is genus zero by using the Riemann-Hurwitz formula

1
9:52(72,.i—1)—Nk+1

-

7

Thus, we can write down a conformal transformation to map the manifold to a sphere
Under conformal transformation g, — e?‘@gw , CFT partition function 7 — ¢~ <5tl®l 7

The sphere has no operation insertions, thus the partition function is 1. Thus,

Fk,nl_{nz,m1 R f— <ETJI] (.131 )Eﬁ;] A (;TQ)ETE] B (lfS)ETC (11)> —_ e_CSL [(I.)]'rn.l ymao,ny,na .k

(even if one cannot explicitly work out the map)
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OPE limit

* Let length of B to be very small, then we can use the OPE

ETgl’FA ({L’Q)ETEITB (.'133) — (.’L‘g — .I’g)%:TElTA (.‘173) + (.'13'3 — .’L‘z)g-lbgL_%ETngA (L“g)
c
AT(, 1, = 9 (Fractional descendant)
. —ef) fl) — Y lge , 23y (s
Thus F = e~ ¢/(n f(n) = 5 log - + const + O((1 —n)*’?) (n—1)

*The other limit (A, C small) does not work due to non-commutativity of OPE limit and replica limit
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Exact result for special classes of states

» Stabilizer states — CMI bound is saturated for all \

~ , /244X —1/2—i) /244N 1/2—0A
PABC()\) :N’\(PAB) :ﬂB/c z Pp /2= PABPp 2t pB/C 1 ’

Independent of A

F(pagc, papc) = e 1ACIB)/2

* 2+1D topological order ground state (Assuming entanglement bootstrap)

B | 1
F(pagc,papc) =e TACIB/2Z —
' ) e s Voo
B
I(A:C|B) =2y The toric code is an example for both cases

Pirsa: 23090053

Page 25/28



Stabilizer state: proof outline

Stabilizer group GG = {g{"g5* - - - g,

ci € {0,1}} [g9i.9;] =0

14+ g;
Stabilizer state  p = H 29 S(p)=N—n

?

Since each term is a projector, p“ x p,Va

The recovered state has all stabilizers supported on AB and BC, but not jointly supported on ABC.

1/24iN —1/2—iX —1/244N 1/2—i)
BC P

papc(A) = NA(PAB) =p Pp PABPR Ppc

The number of missing stabilizer is exactly CMI, which equals — log F’
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Topological order: proof outline

PﬁBc are mutually orthogonal

PAB,PBC independent of the anyon insertion

2

)

_ 2 |
papc =) psbimc I(A:C|B); =0

a

Doing Petz map on pABc we get exact recovery

1

. a=l - \ -y
PABC = PABC F(papc,papc) = =€)

D
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Open questions

Analytic form of the universal function in CFT

More understanding about entanglement in CFT
* When B is large, how close is ABC to a Markov chain?
* How quantum the correlation between A and Cis?

Implications on measurement induced phase transitions (stabilizer v.s. Haar random)

In what cases the Petz map gives more information about the universal properties than CMI?
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