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Abstract: With rapid progress in simulation of strongly interacting quantum Hamiltonians, the challenge in characterizing unknown phases becomes
a bottleneck for scientific progress. We demonstrate that a Quantum-Classical hybrid approach (QuCl) of mining the projective snapshots with
interpretable classical machine learning, can unveil new signatures of seemingly featureless quantum states. The Kitaev-Heisenberg model on a
honeycomb lattice with bond-dependent frustrated interactions presents an ideal system to test QUCIl. The model hosts a wealth of quantum spin
liquid states: gapped and gapless Z2 spin liquids, and a chiral spin liquid (CSL) phase in a small external magnetic field. Recently, various
simulations have found a new intermediate gapless phase (IGP), sandwiched between the CSL and a partially polarized phase, launching a debate
over its elusive nature. We reveal signatures of phases in the model by contrasting two phases pairwise using an interpretable neural network, the
correlator convolutional neural network (CCNN). We train the CCNN with a labeled collection of sampled projective measurements and reveal
signatures of each phase through regularization path analysis. We show that QuCl reproduces known features of established spin liquid phases and
ordered phases. Most significantly, we identify a signature motif of the field-induced IGP in the spin channel perpendicular to the field direction,
which we interpret as a signature of Friedel oscillations of gapless spinons forming a Fermi surface. Our predictions can guide future experimental
searches for U(1) spin liquids.

Zoom link: https://pitp.zoom.us/j/94233944575?pwd=0VIjLzMrZzIKeUErNHZQRKEZM FRKUTO09
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Characterizing guantum many-body states

32 spins: 23?2 complex numbers = 60GB

How much information in Pl library?

What can we do with wf data?
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Projective measurements _/74_

States on a quantum simulator are accessed through projective
measurements e.g. bitstrings 001001110, 111010111, ...

Things we can do with bitstrings

Fewer samples needed
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Machine learning with snapshots

* Snapshots are suitable for machine learning:
* Large volume of data points drawn from distribution
* Snapshots have consistent structure (lattice sites, symmetries, ...)
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* Ensemble of snapshots reconstructs all* of original state

W)

S

M

D

001100101..
010100101..
111010111...
100101000...

2 === Something?

Page 5/36



Gapped
chiral SL,
approx. Z-

Partially
polarized

Magnetic order
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Snapshots from DMRG

y > > ) Sl = + Z
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trace out rest of system .
project and move on

rotate into some spin basis
and sample spin +1 or -1
from RDM
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DMRG snapshots and ML

* Which axis to measure in? Depends on the specific training
* Basis direction encoded in snapshot channel “RGB”
* Honeycomb lattice maps to array

mmmssss) 3 x 2W x L tensor of {-1,0,1}
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Architecture

Estimate n-point functions

Weight of each n-point function

Filters learn motifs C
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Significant correlators
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Architecture

* How to think about learning different n-point functions?

* Consider an expansion of some activation function (nonlinearity)
2

Z
f(Z) ""BO +Zﬁ1 +?a2
* Now z = ) x;w;, the convolution output of input data x with filter

weights w
f(z) ~ Bo + B1Y.Biw; + B2 Y.BiBjw;w; ...

1pt fns 2pt fns

-> |earning an activation function is equivalent to learning weights for
different orders of correlations
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Interpreting filters

* Suppose B}, is first to increase in RPA
* Look for filter #k

f(z) ~ Bo + B12B;w; + B2Y.B;Bjw;w; ..

* Correlation function is the term that is
multiplied by B}, for example

P (a) = Z w()w()B(a + x)B(a + y)

xy
* Weighted sum of k-pt fns
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Architecture

* How to think about learning different n-point functions?

* Consider an expansion of some activation function (nonlinearity)
2

Z
f(Z) ""BO +Zﬁ1 +?a2
* Now z = ) x;w;, the convolution output of input data x with filter

weights w
f(z) ~ Bo + B1Y.Biw; + B2 Y.BiBjw;w; ...

1pt fns 2pt fns

-> |earning an activation function is equivalent to learning weights for
different orders of correlations
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Output prediction

* Full NN representation:
1

Y T T ¥ exp(T B e W COB(x + A)7)

Coefficients select particular

correlations to be used Learnable weights govern
spatial layout of correlators
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Regularization path analysis

L(y,y) = —ylogy — (1 —y)log(1 —9) + 7 Z .:'3,(\__,'"')
k.n

* RPA: feature selection

* For RPA, retrain with filters wy, fixed
but allow couplings f;; to vary as we
change the L1 regularization y

* Look for the moment where the first
p); becomes nonzero

50% =
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Interpreting filters

* Suppose B}/ is first to increase in RPA
* Look for filter #k

f(z) ~ Bo + B12B;w; + B2Y.B;Bjw;w; ..

* Correlation function is the term that is
multiplied by 8}, for example

R@ = ) weOw()B(a +x)B(a+y)

xy
* Weighted sum of k-pt fns
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Interpreting filters

* Suppose B}/ is first to increase in RPA
* Look for filter #k

f(z) ~ Bo + B12B;w; + B2Y.B;Bjw;w; ..

* Correlation function is the term that is
multiplied by 8}, for example

R@ = ) weOw()B(a +x)B(a+y)

xy
* Weighted sum of k-pt fns "
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DMRG snapshots and ML

* Which axis to measure in? Depends on the specific training
* Basis direction encoded in snapshot channel “RGB”
* Honeycomb lattice maps to array

) 3 x 2W x L tensor of {-1,0,1}
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Interpreting filters

* Suppose B}, is first to increase in RPA
* Look for filter #k

f(z) ~ Bo + B12B;w; + B2Y.B;Bjw;w; .

* Correlation function is the term that is
multiplied by B}, for example

R@ = ) weOw()B(a+x)B(a+y)

xy
* Weighted sum of k-pt fns "
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Benchmark: Kitaev vs FM

* Known transition from SL to order

* Sneakily skip past zigzag order to learn
feature of FM

* Training procedure:
9000 training, 1000 test

* Binary classification between K, =
K, = K, SL and ordered FM states
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Benchmark: Kitaev vs FM

* RPA shows most important correlators are

2-point functions of

Filter 2
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Benchmark: Kitaev vs FM

* RPA shows most important correlators are
2-point functions of

Filter 2 Filter 3 H = Z K]"Slysjy _]Si | Sj
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Output prediction

* Full NN representation:

1

Y T T ¥ exp(T B e W COB(x + A)7)

Coefficients select particular
correlations to be used
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Learnable weights govern
spatial layout of correlators

CCNN




Benchmark: Z, SLs

* Transition from gapless to gapped Z,
upon tuning K,

* Exact solution in terms of bond L1 =0
fermions and majoranas -

ﬁ x(13)= (C§+ iC}.;) <

: +., . e
Gﬁyz 1%_(X(2]§l- x(:.i)) ’ 0-; = Cf"(x(:ﬁ) x( )

gapped
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Benchmark: Z, SLs

 Random x, y, z basis
* Filters:

Filter O Filter 1 | Filter 2

y
OOOO 0.5 OOOO - 0.5 OOOO 0.5

* Exact solution: spin-spin correlation
3

<0§0j) = SEIFJ.):(O) = T2 . cosO(ky, ky)dk,dk,,
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Structure of chiral phase

* CSL is has approximate Z, ’)("5‘%"* "
]

gauge theory

P B S N
Wy = 010,030,050

[W,H]=0
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Topological feature in chiral phase

» Snapshot in plaquette basis: @0 e ®0%e® el .
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Discovering new feature of gapless phase

* Naively the NN would learn the total magnetization
(since correlation functions are not connected) -

 How to suppress effect of h? /("f?‘l‘ﬁﬂ"* '
-

* Switch to a basis e; , 3 where magnetization can be
absorbed into e; direction, and take snapshots in
random e, e, basis
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Fourier analysis and magnetization

FT filter 5

1 =(
0
-1
-2

kfm

FT magnetization

bz - * Bragg peaks associated with AF tiling consistent
1 with DMRG measurement
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Real-space magnetization feature

* Real-space magnetization pattern consistent with filter

* Oscillation captured by 2-pt fn
* Feature is not present in CSL phase: what physics does it signify?

FT CSL
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Spinon mapping

* Transformation of majoranas into spinons ® b?

ci = (i1 + lj )i = -i(-c,-f'fll — 1), b2 = ia+ "-"""z'T,'z* 0 — i(t,:f,':.rvz —1h; 2),

* Mapping from spin to spinon density
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Field dependence of Friedel oscillations

* Friedel oscillations reveal Fermi surface size

* Probe field dependence by fitting to functional form fy = 068
kp ~ 0.54

kr . sin(2kpr)
QATF'T’

0.0 2.5 5.0 7.5 10.0
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Longer systems
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Sketch and comparison of conjecture

* Previous conjecture (Patel & Trivedi) of FS size consistent with our
results

0.9] Spinon Fermi Surface
WL ‘) -
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Significance and conclusions

* ML-led discovery of a characteristic feature (Friedel oscillations) in re-
entrant gapless phase of Kitaev model

* Potential probe in experiments: measurement of correlations in
specific axis rather than total S - S

Collaborators

* Feng Shi, Nandini Trivedi (OSU)
* Yuri Lensky, Eun-Ah Kim (Cornell)
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Architecture

* How to think about learning different n-point functions?

* Consider an expansion of some activation function (nonlinearity)
2

Z
f(Z) ""BO +Zﬁ1 +?a2
* Now z = ) x;w;, the convolution output of input data x with filter

weights w
f(z) ~ Bo + B1Y.Biw; + B2 Y.BiBjw;w; ...

1pt fns 2pt fns

-> |earning an activation function is equivalent to learning weights for
different orders of correlations
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Architecture

Filters learn motifs G
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Miles et al. (Nat. Comm. 2021)
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Significant correlators

<-> spatial motifs
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