Title: Machine learning feature discovery of spinon Fermi surface

Speakers:

Series: Machine Learning Initiative
Date: September 22, 2023-2:30 PM
URL: https://pirsa.org/23090051
Abstract: With rapid progress in simulation of strongly interacting quantum Hamiltonians, the challenge in characterizing unknown phases becomes a bottleneck for scientific progress. We demonstrate that a Quantum-Classical hybrid approach (QuCl) of mining the projective snapshots with interpretable classical machine learning, can unveil new signatures of seemingly featureless quantum states. The Kitaev-Heisenberg model on a honeycomb lattice with bond-dependent frustrated interactions presents an ideal system to test QuCl . The model hosts a wealth of quantum spin liquid states: gapped and gapless Z 2 spin liquids, and a chiral spin liquid (CSL) phase in a small external magnetic field. Recently, various simulations have found a new intermediate gapless phase (IGP), sandwiched between the CSL and a partially polarized phase, launching a debate over its elusive nature. We reveal signatures of phases in the model by contrasting two phases pairwise using an interpretable neural network, the correlator convolutional neural network (CCNN). We train the CCNN with a labeled collection of sampled projective measurements and reveal signatures of each phase through regularization path analysis. We show that QuCl reproduces known features of established spin liquid phases and ordered phases. Most significantly, we identify a signature motif of the field-induced IGP in the spin channel perpendicular to the field direction, which we interpret as a signature of Friedel oscillations of gapless spinons forming a Fermi surface. Our predictions can guide future experimental searches for $\mathrm{U}(1)$ spin liquids.

Zoom link: https://pitp.zoom.us/j/94233944575?pwd=OVljLzMrZzlKeUErNHZQRkEzMFRKUT09

Machine learning feature discovery of spinon Fermi surface

Kevin Zhang @ PI

Cornell University

(0)

Characterizing quantum many-body states

32 spins: 2^{32} complex numbers $=60 G B$

How much information in PI library?
What can we do with wf data?
measure observables $\langle\Psi| O|\Psi\rangle$ or
snapshots $P_{i} \sim\left|c_{i}\right|^{2}$

Projective measurements

States on a quantum simulator are accessed through projective measurements e.g. bitstrings 001001110, 111010111, ...

Things we can do with bitstrings
Fewer samples needed

Full tomography James et al. (PRA 2001)

Machine learning?

Machine learning with snapshots

- Snapshots are suitable for machine learning:
- Large volume of data points drawn from distribution
- Snapshots have consistent structure (lattice sites, symmetries, ...)
- Ensemble of snapshots reconstructs all* of original state

Snapshots from DMRG

rotate into some spin basis
and sample spin +1 or -1
from RDM

DMRG snapshots and ML

- Which axis to measure in? Depends on the specific training
- Basis direction encoded in snapshot channel "RGB"
- Honeycomb lattice maps to array

$3 \times 2 \mathrm{~W} \times \mathrm{L}$ tensor of $\{-1,0,1\}$

Architecture

Weight of each n-point function

Estimate n-point functions

Architecture

- How to think about learning different n-point functions?
- Consider an expansion of some activation function (nonlinearity)

$$
f(z) \sim \beta_{0}+z \beta_{1}+\frac{z^{2}}{2} a_{2} \ldots
$$

- Now $z=\sum x_{i} w_{i}$, the convolution output of input data x with filter weights w

$$
f(z) \sim \beta_{0}+\beta_{1} \sum_{1 \mathrm{pt} \mathrm{fns}}^{B_{i} w_{i}}+\beta_{2} \sum_{2 \mathrm{pt} \mathrm{fns}} B_{i} B_{j} w_{i} w_{j} \ldots
$$

-> learning an activation function is equivalent to learning weights for different orders of correlations

Interpreting filters

- Suppose β_{k}^{n} is first to increase in RPA
- Look for filter \#k

$$
f(z) \sim \beta_{0}+\beta_{1} \sum B_{i} w_{i}+\beta_{2} \sum B_{i} B_{j} w_{i} w_{j} \ldots
$$

- Correlation function is the term that is multiplied by β_{k}^{n}, for example
$c_{k}^{n}(a)=\sum_{x y} w(x) w(y) B(a+x) B(a+y)$
- Weighted sum of $k-p t$ fns

Architecture

- How to think about learning different n-point functions?
- Consider an expansion of some activation function (nonlinearity)

$$
f(z) \sim \beta_{0}+z \beta_{1}+\frac{z^{2}}{2} a_{2} \ldots
$$

- Now $z=\sum x_{i} w_{i}$, the convolution output of input data x with filter weights w

$$
f(z) \sim \beta_{0}+\beta_{1} \sum_{1 \mathrm{pt} \mathrm{fns}}^{B_{i} w_{i}}+\beta_{2} \sum_{2 \mathrm{pt} \mathrm{fns}} B_{i} B_{j} w_{i} w_{j} \ldots
$$

-> learning an activation function is equivalent to learning weights for different orders of correlations

Output prediction

- Full NN representation:

$$
y=\frac{1}{1+\exp \left(\sum_{n k} \beta_{k}^{n}\left(\sum_{x} w_{k}(x) B(x+d)\right)^{n}\right)}
$$

Coefficients select particular correlations to be used

Learnable weights govern
spatial layout of correlators

Regularization path analysis

$$
L(y, \hat{y})=-y \log \hat{y}-(1-y) \log (1-\hat{y})+\gamma \sum_{k, n} \beta_{k}^{(n)}
$$

- RPA: feature selection
- For RPA, retrain with filters w_{k} fixed but allow couplings β_{k}^{n} to vary as we change the L1 regularization γ
- Look for the moment where the first β_{k}^{n} becomes nonzero

Interpreting filters

- Suppose β_{k}^{n} is first to increase in RPA
- Look for filter \#k

$$
f(z) \sim \beta_{0}+\beta_{1} \sum B_{i} w_{i}+\beta_{2} \sum B_{i} B_{j} w_{i} w_{j} \ldots
$$

- Correlation function is the term that is multiplied by β_{k}^{n}, for example
$c_{k}^{n}(a)=\sum_{x y} w(x) w(y) B(a+x) B(a+y)$
- Weighted sum of $k-p t$ fns

Interpreting filters

- Suppose β_{k}^{n} is first to increase in RPA
- Look for filter \#k

$$
f(z) \sim \beta_{0}+\beta_{1} \sum B_{i} w_{i}+\beta_{2} \sum B_{i} B_{j} w_{i} w_{j} \ldots
$$

- Correlation function is the term that is multiplied by β_{k}^{n}, for example
$c_{k}^{n}(a)=\sum_{x y} w(x) w(y) B(a+x) B(a+y)$
- Weighted sum of $k-p t f n s$

DMRG snapshots and ML

- Which axis to measure in? Depends on the specific training
- Basis direction encoded in snapshot channel "RGB"
- Honeycomb lattice maps to array

$3 \times 2 \mathrm{~W} \times \mathrm{L}$ tensor of $\{-1,0,1\}$

Interpreting filters

- Suppose β_{k}^{n} is first to increase in RPA
- Look for filter \#k

$$
f(z) \sim \beta_{0}+\beta_{1} \sum B_{i} w_{i}+\beta_{2} \sum B_{i} B_{j} w_{i} w_{j} \ldots
$$

- Correlation function is the term that is multiplied by β_{k}^{n}, for example
$c_{k}^{n}(a)=\sum_{x y} w(x) w(y) B(a+x) B(a+y)$
- Weighted sum of $k-p t f n s$

Benchmark: Kitaev vs FM

- Known transition from SL to order
- Sneakily skip past zigzag order to learn feature of FM
- Training procedure: 9000 training, 1000 test
- Binary classification between $K_{x}=$ $K_{y}=K_{z}$ SL and ordered FM states

Benchmark: Kitaev vs FM

- RPA shows most important correlators are 2-point functions of

which represent

$$
\left.\left.\langle | S^{z}(0)\right|^{2}\right\rangle, z \leftrightarrow y
$$

Benchmark: Kitaev vs FM

- RPA shows most important correlators are 2-point functions of

which represent

$$
\left.\left.\langle | S^{z}(0)\right|^{2}\right\rangle, z \leftrightarrow y
$$

- Signature of Heisenberg ferromagnet

Output prediction

- Full NN representation:

$$
y=\frac{1}{1+\exp \left(\sum_{n k} \beta_{k}^{n}\left(\sum_{x} w_{k}(x) B(x+d)\right)^{n}\right)}
$$

Coefficients select particular correlations to be used

Learnable weights govern spatial layout of correlators

Benchmark: Z_{2} SLs

- Transition from gapless to gapped Z_{2} upon tuning K_{z}
- Exact solution in terms of bond fermions and majoranas

Benchmark: Z_{2} SLs

- Random x, y, z basis
- Filters:

- Exact solution: spin-spin correlation

$$
\left\langle\sigma_{i}^{z} \sigma_{j}^{z}\right\rangle \equiv S_{\langle i j\rangle z}^{z z}(0)=\frac{\sqrt{3}}{16 \pi^{2}} \int_{B Z} \cos \theta\left(k_{1}, k_{2}\right) d k_{1} d k_{2}
$$

Structure of chiral phase

- CSL is has approximate Z_{2} gauge theory

$$
\begin{aligned}
& W_{p}=\sigma_{1}^{x} \sigma_{2}^{y} \sigma_{3}^{z} \sigma_{4}^{x} \sigma_{5}^{y} \sigma_{6}^{z} \\
& {[\mathrm{~W}, \mathrm{H}]=0}
\end{aligned}
$$

Topological feature in chiral phase

- Snapshot in plaquette basis: Wilson loop of gauge theory
- 6-point function learned by NI is the Wilson loop

Discovering new feature of gapless phase

- Naively the NN would learn the total magnetization (since correlation functions are not connected)
- How to suppress effect of h ?
- Switch to a basis $e_{1,2,3}$ where magnetization can be
 absorbed into e_{3} direction, and take snapshots in random e_{1}, e_{2} basis

Fourier analysis and magnetization

- Conjecture an AF tiling of the filter $\left\langle S_{e_{1}}\right\rangle=0$

- Bragg peaks associated with AF tiling consistent with DMRG measurement

Real-space magnetization feature

- Real-space magnetization pattern consistent with filter
- Oscillation captured by 2-pt fn
- Feature is not present in CSL phase: what physics does it signify?

Spinon mapping

- Transformation of majoranas into spinons

$c_{i}=\left(\psi_{i, 1}+\psi_{i, 1}^{\dagger}\right), b_{i}^{e_{1}}=i\left(\psi_{i, 1}^{\dagger}-\psi_{i, 1}\right), b_{i}^{e_{2}}=\psi_{i, 2}+\psi_{i, 2}^{\dagger}, b_{i}^{e_{3}}=i\left(\psi_{i, 2}^{\dagger}-\psi_{i, 2}\right)$,
- Mapping from spin to spinon density

$$
\begin{aligned}
& S_{i}^{e_{1}}=i c_{i} b_{i}^{e_{1}}=-\left(\psi_{i, 1}+\psi_{i, 1}^{\dagger}\right)\left(\psi_{i, 1}^{\dagger}-\psi_{i, 1}\right)=2 \psi_{i, 1}^{\dagger} \psi_{i, 1}-1 \\
& S_{i}^{e_{2}}=i c_{i} c_{i}^{e_{2}}=i\left(\psi_{i, 1}+\psi_{i, 1}^{\dagger}\right)\left(\psi_{i, 2}^{\dagger}+\psi_{i, 2}\right)=i \psi_{i, 1} \psi_{i, 2}+i \psi_{i, 1} \psi_{i, 2}^{\dagger}+i \psi_{i, 1}^{\dagger} \psi_{i, 2}+i \psi_{i, 1}^{\dagger} \psi_{i, 2}^{\dagger} \\
& S_{i}^{e_{3}}=i c_{i} i_{i}^{e_{3}}=-\left(\psi_{i, 1}+\psi_{i, 1}^{\dagger}\right)\left(\psi_{i, 2}-\psi_{i, 2}^{\dagger}\right)=-\psi_{i, 1} \psi_{i, 2}+\psi_{i, 1} \psi_{i, 2}^{\dagger}-\psi_{i, 1}^{\dagger} \psi_{i, 2}+\psi_{i, 1}^{\dagger} \psi_{i, 2}^{\dagger}
\end{aligned}
$$

Field dependence of Friedel oscillations

- Friedel oscillations reveal Fermi surface size
- Probe field dependence by fitting to functional form

$$
\left\langle S^{e_{1}}(r)\right\rangle \sim\left\langle n_{1}(r)\right\rangle \sim \frac{k_{F}}{\pi}\left[1-\frac{\sin \left(2 k_{F} r\right)}{2 k_{F} r}\right]
$$

Longer systems

Sketch and comparison of conjecture

- Previous conjecture (Patel \& Trivedi) of FS size consistent with our results

Significance and conclusions

- ML-led discovery of a characteristic feature (Friedel oscillations) in reentrant gapless phase of Kitaev model
- Potential probe in experiments: measurement of correlations in specific axis rather than total $S \cdot S$

Collaborators

- Feng Shi, Nandini Trivedi (OSU)
- Yuri Lensky, Eun-Ah Kim (Cornell)

Architecture

- How to think about learning different n-point functions?
- Consider an expansion of some activation function (nonlinearity)

$$
f(z) \sim \beta_{0}+z \beta_{1}+\frac{z^{2}}{2} a_{2} \ldots
$$

- Now $z=\sum x_{i} w_{i}$, the convolution output of input data x with filter weights w

$$
f(z) \sim \beta_{0}+\beta_{1} \sum_{1 \mathrm{pt} \mathrm{fns}}^{B_{i} w_{i}}+\beta_{2} \sum_{2 \mathrm{pt} \mathrm{fns}} B_{i} B_{j} w_{i} w_{j} \ldots
$$

-> learning an activation function is equivalent to learning weights for different orders of correlations

Architecture

- Dominant filter weight $\beta_{k^{*}}^{\left(n^{*}\right)}$ <-> spatial motifs

Miles et al. (Nat. Comm. 2021)

