Title: Quantum Theory Lecture - 091423

Speakers: Bindiya Arora, Dan Wohns

Collection: Quantum Theory 2023/24

Date: September 14, 2023 - 10:45 AM

URL: https://pirsa.org/23090043







# **Path Integral**

For continuum limit  $\delta t \rightarrow 0$ , we get the path integral representation

$$\mathcal{A} = \langle q_F | e^{iHT} | q_I \rangle = \int Dq(t) e^{i\int_0^T dt L(\dot{q},q)}$$
 Path Integral

$$Z=\langle 0|e^{iHT}|0\rangle=\int Dq(t)e^{i\int_0^T L(\dot{q},q)\ dt}$$
  $\longrightarrow$  For I and F as ground state

With 
$$\int Dq(t) = \lim_{N o\infty} \left(rac{im}{2\pi\Delta t}
ight)^{rac{N}{2}} \left(\Pi_{k=1}^{N-1}\int dq_k
ight)$$

# Example

Consider an electron translate from (0,0) to  $~q'=1{
m cm},~t'=1{
m sec}$  with  $~m=9.1\times 10^{-31}{
m kg},~\hbar=1.05\times 10^{-34}{
m m}^2{
m kg/sec}$ 

Straight Path 
$$\frac{q}{t} = \frac{q'}{t'} = v$$

$$S_{st} = ?$$

Parabolic Path 
$$\frac{q}{t^2} = \frac{q'}{{t'}^2}$$

$$S_{pr}=$$
 ?

Difference  $\Delta S =$  ?



## For 100 distinct paths from S to O





Pirsa: 23090043 Page 7/34

# **Summing Up Phases**

#### Add all phases, connecting head to tail

- Phases of paths that deviate minimally from the classical path contribute maximum to the final amplitude
- Phases of paths deviating significantly from the classical path swirl around canceling each other



Pirsa: 23090043 Page 8/34

# Example

Consider a classical particle translate from (0,0) to  $\,q'=1{
m cm},\,\,t'=1{
m sec}$  with  $\,m=1{
m g},\,\,\hbar=1.05 imes10^{-34}{
m m}^2{
m kg/sec}$ 

Straight Path 
$$\ \frac{q}{t} = \frac{q'}{t'} = v$$

$$S_{st}=rac{1}{2}rac{mq'^2}{t'}$$

Parabolic Path 
$$\frac{q}{t^2} = \frac{q'}{{t'}^2}$$

$$S_{pr}=rac{2}{3}rac{mq'^2}{t'}$$

Difference  $\Delta S =$  ?



# Example

Consider a classical particle translate from (0,0) to  $\,q'=1{
m cm},\,\,t'=1{
m sec}$  with  $\,m=1{
m g},\,\,\hbar=1.05 imes10^{-34}{
m m}^2{
m kg/sec}$ 

Straight Path 
$$\frac{q}{t} = \frac{q'}{t'} = v$$

$$S_{st} = \frac{1}{2} \frac{mq^2}{t'}$$

Parabolic Path 
$$\frac{q}{t^2} = \frac{q'}{{t'}^2}$$

$$S_{pr}=rac{2}{3}rac{mq'^2}{t'}$$

Difference 
$$\Delta S = \frac{1}{6} \frac{mq'^2}{t'} \sim 10^{27}$$

Random Phase



If Quantum mechanics applies to all particles, why does a macroscopic particle appear to follow a specific path?

#### Classical Limit $S >> \hbar$

As S increases, phases of even slightly deviating paths from the classical trajectory swirl around and cancel out



Infinite paths reduces to one determined by Euler-Lagrange equation

If Quantum mechanics applies to all particles, why does a macroscopic particle appear to follow a specific path?

#### Classical Limit $S >> \hbar$

As S increases, phases of even slightly deviating paths from the classical trajectory swirl around and cancel out



Infinite paths reduces to one determined by Euler-Lagrange equation

If Quantum mechanics applies to all particles, why does a macroscopic particle appear to follow a specific path?

#### Classical Limit $S>>\hbar$

As S increases, phases of slightly deviating paths from the classical trajectory swirl around and cancel out

Infinite paths reduces to one determined by Euler-Lagrange equation



Pirsa: 23090043 Page 13/34

If Quantum mechanics applies to all particles, why does a macroscopic particle appear to follow a specific path?

#### Classical Limit $S>>\hbar$

As S increases, phases of slightly deviating paths from the classical trajectory swirl around and cancel out



Infinite paths reduces to one determined by Euler-Lagrange equation

Pirsa: 23090043 Page 14/34



"A theory with mathematical beauty is more likely to be correct than an ugly one that fits some experimental data"

P.A.M. Dirac

Image Source : Wikipedia, Paul Dirac, en.wikipedia.org/wiki/Paul\_Dirac

Pirsa: 23090043 Page 15/34

## **Problems with QM**

- Particles can live and die
   Particles never appear or disappear in QM
- 2. Asymmetric treatment of space and time
  Space is treated as observable and time as parameter
- 3. Atom-Light Interaction
  Light is treated as field and electron as particle

Pirsa: 23090043 Page 16/34

## **Faster Than Light**

Consider a particle moves from  $\mathbf{q}_{l}$  (at origin) to  $\mathbf{q}_{r}$  (in region q>>t)

QM: 
$$\langle q_F|e^{-i\hat{H}t}|q_I
angle\propto e^{rac{i\Delta q^2m}{2t}}
eq 0$$





# Why Coulomb potential in 1/r?

Why are all electron same?

Why are all electron same?



## **Field**

Assign Scalar, Vector, Tensor, Spinor, or Corn, to each point in space



**Corn Field** 



Page 20/34 Pirsa: 23090043

## A General Scalar Field

Assign scalar number to each point in space

Scalar Field 
$$\,\phi(x)\in\mathbb{R}\,$$

Potential Within the Field 
$$F(\phi) = e + f \phi + \frac{1}{2} m^2 \phi^2 + \frac{g}{3!} \phi^3 + \frac{\lambda}{4!} \phi^4 + \cdots$$

Pirsa: 23090043 Page 21/34

- Imagine discretized space
- To each point is assigned a number represented by field value  $\phi(x_i, y_i, z_i, t)$
- Each  $\phi(x_i, y_i, z_i, t)$  is connected through a potential within the field (when value of  $\phi(x_i, y_i, z_i, t)$  at one point in space changes it affects nearby)





Pirsa: 23090043 Page 22/34

## **Path Integral**

$$Z=\langle 0|e^{iHT}|0
angle =\int Dq(t)e^{i\int_0^TL(\dot{q},q)dt}$$
  $\longrightarrow$  For Particles 
$$=\int D\phi e^{i\int_0^TL(\partial_t\phi,\phi)dt}$$
  $\longrightarrow$  For Scalar Field Lagrangian

Pirsa: 23090043 Page 23/34

## **A Bunch Of Oscillators**



Pirsa: 23090043 Page 24/34



Pirsa: 23090043 Page 25/34



Pirsa: 23090043 Page 26/34







Pirsa: 23090043 Page 29/34



Pirsa: 23090043 Page 30/34

$$\mathcal{L} = \frac{1}{2} \left( (\partial_{\mu} \phi) (\partial^{\mu} \phi) - \frac{m^{2}}{2} \phi^{2} - \frac{\gamma}{3!} \phi^{3} - \cdots \right)$$

$$\frac{\partial \mathcal{L}}{\partial \phi} = -m^{2} \phi - \frac{\gamma}{2!} \phi^{3} - \cdots$$

$$\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} = \partial_{\mu} \left( \frac{\partial}{\partial (\partial_{\mu} \phi)} (\partial^{\chi} \phi) (\partial^{\chi} \phi) \right)$$

$$\mathcal{A}^{\chi \beta \partial} = -m^{2} \phi - \frac{\gamma}{2!} \phi^{3} - \cdots$$

$$\frac{\partial}{\partial \phi} = -m^{2} \phi - \frac{\gamma}{2!} \phi^{3} - \cdots$$

$$\frac{\partial}{\partial \phi} = -m^{2} \phi - \frac{\gamma}{3!} \phi^{3} - \cdots$$

$$\frac{\partial}{\partial \phi} = -m^{2} \phi - \frac{\gamma}{2!} \phi^{3} - \cdots$$

$$\frac{\partial}{\partial \phi} = -m^{2} \phi - \frac{\gamma}{2!} \phi^{3} - \cdots$$

$$\frac{\partial}{\partial \phi} = -m^{2} \phi - \frac{\gamma}{2!} \phi^{3} - \cdots$$

$$\frac{\partial}{\partial \phi} = -m^{2} \phi - \frac{\gamma}{2!} \phi^{3} - \cdots$$

$$\frac{\partial}{\partial \phi} = -m^{2} \phi - \frac{\gamma}{2!} \phi^{3} - \cdots$$

$$\frac{\partial}{\partial \phi} = -m^{2} \phi - \frac{\gamma}{2!} \phi^{3} - \cdots$$

$$\frac{\partial}{\partial \phi} = -m^{2} \phi - \frac{\gamma}{2!} \phi^{3} - \cdots$$

$$\frac{\partial}{\partial \phi} = -m^{2} \phi - \frac{\gamma}{2!} \phi^{3} - \cdots$$

$$\frac{\partial}{\partial \phi} = -m^{2} \phi - \frac{\gamma}{2!} \phi^{3} - \cdots$$

$$\frac{\partial}{\partial \phi} = -m^{2} \phi - \frac{\gamma}{2!} \phi^{3} - \cdots$$

$$\frac{\partial}{\partial \phi} = -m^{2} \phi - \frac{\gamma}{2!} \phi^{3} - \cdots$$

$$\frac{\partial}{\partial \phi} = -m^{2} \phi - \frac{\gamma}{2!} \phi^{3} - \cdots$$

$$\frac{\partial}{\partial \phi} = -m^{2} \phi - \frac{\gamma}{2!} \phi^{3} - \cdots$$

$$\frac{\partial}{\partial \phi} = -m^{2} \phi - \frac{\gamma}{2!} \phi^{3} - \cdots$$

$$\frac{\partial}{\partial \phi} = -m^{2} \phi - \frac{\gamma}{2!} \phi^{3} - \cdots$$

$$\frac{\partial}{\partial \phi} = -m^{2} \phi - \frac{\gamma}{2!} \phi^{3} - \cdots$$

$$\frac{\partial}{\partial \phi} = -m^{2} \phi - \frac{\gamma}{2!} \phi^{3} - \cdots$$

$$\frac{\partial}{\partial \phi} = -m^{2} \phi - \frac{\gamma}{2!} \phi^{3} - \cdots$$

$$\frac{\partial}{\partial \phi} = -m^{2} \phi - \frac{\gamma}{2!} \phi^{3} - \cdots$$

$$\frac{\partial}{\partial \phi} = -m^{2} \phi - \frac{\gamma}{2!} \phi^{3} - \cdots$$

$$\frac{\partial}{\partial \phi} = -m^{2} \phi - \frac{\gamma}{2!} \phi^{3} - \cdots$$

$$\frac{\partial}{\partial \phi} = -m^{2} \phi - \frac{\gamma}{2!} \phi^{3} - \cdots$$

$$\frac{\partial}{\partial \phi} = -m^{2} \phi - \frac{\gamma}{2!} \phi^{3} - \cdots$$

$$\frac{\partial}{\partial \phi} = -m^{2} \phi - \frac{\gamma}{2!} \phi^{3} - \cdots$$

$$\frac{\partial}{\partial \phi} = -m^{2} \phi - \frac{\gamma}{2!} \phi^{3} - \cdots$$

$$\frac{\partial}{\partial \phi} = -m^{2} \phi - \frac{\gamma}{2!} \phi^{3} - \cdots$$

$$\frac{\partial}{\partial \phi} = -m^{2} \phi - \frac{\gamma}{2!} \phi^{3} - \cdots$$

$$\frac{\partial}{\partial \phi} = -m^{2} \phi - \frac{\gamma}{2!} \phi^{3} - \cdots$$

$$\frac{\partial}{\partial \phi} = -m^{2} \phi - \frac{\gamma}{2!} \phi^{3} - \cdots$$

$$\frac{\partial}{\partial \phi} = -m^{2} \phi - \frac{\gamma}{2!} \phi^{3} - \cdots$$

$$\frac{\partial}{\partial \phi} = -m^{2} \phi - \frac{\gamma}{2!} \phi^{3} - \cdots$$

$$\frac{\partial}{\partial \phi} = -m^{2} \phi - \frac{\gamma}{2!} \phi^{3} - \cdots$$

$$\frac{\partial}{\partial \phi} = -m^{2} \phi - \frac{\gamma}{2!} \phi^{3} - \cdots$$

$$\frac{\partial}{\partial \phi} = -m^{2} \phi - \frac{\gamma}{2!} \phi^{3} - \cdots$$

$$\frac{\partial}{\partial \phi} = -m^{2} \phi - \frac{\gamma}{2!} \phi^{3} - \cdots$$

$$\frac{\partial}{\partial \phi} = -m^{2} \phi - \frac{\gamma}{2!} \phi^{3} - \cdots$$

$$\frac{\partial}{\partial \phi} = -m^{2} \phi - \frac{\gamma}{2!} \phi^{3} - \cdots$$

$$\frac{\partial}{\partial \phi} = -m^{2} \phi - \frac{\gamma}{2!} \phi^{3} - \cdots$$

$$\frac{\partial}{\partial \phi} = -m^{2} \phi - \frac{$$



## **Free Field Theory**

The QFT integral defies resolution except for harmonic approximation

$$\mathcal{L}(\phi)=rac{1}{2}\Big[(\partial\phi)^2-m^2\phi^2\Big]$$
 Free Field Lagrangian

Equation of motion for this lagrangian is

$$(\partial^2 + m^2)\phi(x) = 0$$
 Klein Gordon Equation

Pirsa: 23090043 Page 33/34

## Source

#### We add source to disturb the field

$$J(t, \vec{x}) \longrightarrow {\sf Source Function}$$

Free Field Integral With Added Source

$$Z = \int D\phi e^{i\int d^dx \left((\partial\phi)^2 - F(\phi) + J(x)\phi(x)
ight)}$$



Image Source : Doodlewash, Skipping Stones, doodlewash.com/skipping-stones/

Pirsa: 23090043 Page 34/34