Title: Quantum Theory Lecture - 091423
Speakers: Bindiya Arora, Dan Wohns
Collection: Quantum Theory 2023/24
Date: September 14, 2023 - 10:45 AM
URL.: https://pirsa.org/23090043

Pirsa: 23090043 Page 1/34



Pirsa: 23090043 Page 2/34




Pirsa: 23090043 Page 3/34




Pirsa: 23090043 Page 4/34




Path Integral

For continuum limit 5t—0, we get the path integral representation

A = (gl |qr) = /Dq(f)e'j-ﬁ;rd”‘(d‘q) =>  Path Integral

Z

0]e"]0) = /Dq(f)v’~’0 Maa 4t 3 Forl and F as ground state

, N
: : tme ¢ -
With /Dq(t) = ]\}1_{1;10 (27rAt) (Hi,vll f qu)
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Example

Consider an electron translate from (0,0) to q’ — lcm, t' = 1sec

with m = 9.1 x 10 *'kg, h = 1.05 x 10 **m*kg/sec

Straight Path % = % = sPi'ce
Sst — ? (q'rt')
Parabolic Path l% = 3
Spr = ?
(0,0) >
Difference AS = ? Time

Pirsa: 23090043 Page 6/34




For 100 distinct paths from S to O
Paths
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Summing Up Phases

Add all phases, connecting head to tail

® Phases of paths that deviate minimally
from the classical path contribute
maximum to the final amplitude

® Phases of paths deviating significantly

from the classical path swirl around
canceling each other
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Example

Consider a classical particle translate from (0,0) to ¢’ = lcm, t' = 1sec
with m = 1g, h = 1.05 x 10 *'m®kg/sec

/

Straight Path % = % = sPi'ce
__ 1 mg” b
Sst = 5 (a’.t)
: qg _ ¢
Parabolic Path T =
o 2 m.qu
Sp"' 3t
(0,0) >
Difference AS = ? Time
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Example

Consider a classical particle translate from (0,0) to ¢’ = lcm, t' = 1sec
with m = 1g, h = 1.05 x 10 **m®kg/sec

Straight Path % = % =3 sPi'ce
1 mg” o
Sst = 5 T (a'.t)
/!
Parabolic Path l% = 3
o 9 mqu
SP"’" - 3 ¢
(0,0) >
12 .
Difference AS = %% ~ 10%7 Time
Random
Phase
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Classical Limit

If Quantum mechanics applies to all particles, why does a
macroscopic particle appear to follow a specific path?

Classical Limit S >> A
As S increases, phases of even slightly
deviating paths from the classical o

trajectory swirl around and cancel out ®

Infinite paths reduces to one determined
by Euler-Lagrange equation
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macroscopic particle appear to follow a specific path?

Classical Limit S >> h

As S increases, phases of slightly

deviating paths from the classical
trajectory swirl around and cancel out

Infinite paths reduces to one determined
by Euler-Lagrange equation

Pirsa: 23090043 Page 14/34




“A theory with mathematical beauty is more likely to be
correct than an ugly one that fits some experimental data”

P.A.M. Dirac
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Problems with QM

Particles can live and die
Particles never appear or disappear in QM

Asymmetric treatment of space and time
Space is treated as observable and time as parameter

Atom-Light Interaction
Light is treated as field and electron as particle
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A
\ q/='
Faster Than Light
\ /
Consider a particle moves from q (at origin) to \\\ /// . 9,
q, (in region q>>1) %T\/’ sp:ce
/ \
_-ﬁt iqum ,/ \\
QM : <QF|8 ! ‘QI> X e 2 # 0 /l \\
/ \
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Field

Assign Scalar, Vector, Tensor, Spinor,or Corn, to each point in space

Corn Field 0382

Temperature Field
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A General Scalar Field

Assign scalar number to each point in space

Scalar Field ¢(z) € R

Scale
Factor

Potential

— T ' 1 2 42 g 3 A 4
Within the Field F(¢) _/+;f/¢+ “57”/ ¢ Jrafﬁ JrE(/) + -

Produces
No Effect
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® Imagine discretized space

To each point is assigned a number represented by field value qb(xi,yi,zi,t)
Each ¢(xi,yi,zi,i) is connected through a potential within the field

(when value of gb(xi,yi,zi,'r) at one point in space changes it affects nearby)

s @ ] o ] ’ L 4 AN
e ¢ » ) \
¢ 7 » ? ) o
% - P [ ] e L ] - 5 \.
L » - [} Py @ o . . B
L L Al T .%
X, L Xs X, %
¢ : O(x"YIzn)
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Path Integral

/= <O]eiHT’O> — /Dq(t)ei ) L(d.a)dt ——» For Particles

— /D(bgiﬁL(aﬁf’ad’)dt —— For Scalar Field

Field
Lagrangian
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A Bunch Of Oscillators
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Free Field Theory

The QFT integral defies resolution except for harmonic approximation
1 2 2 12 . .
ﬁ(qb) = 3 [(ad)) — m°¢ ] Free Field Lagrangian

Equation of motion for this lagrangian is

(32 + 'mz)qﬁ(m) = (0 Klein Gordon Equation
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Source
We add source to disturb the field

J(t,7) —> Source Function

Free Field Integral With Added Source

7 — / D¢eif(id1?((3¢)2F(q‘:)#J(;z:)gb(:c))
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