Title: Attacking QPV with instantaneous non-local computation of low T-depth quantum circuits

Speakers: Florian Speelman

Collection: QPV 2023: Advances in quantum position verification

Date: September 21, 2023 - 9:30 AM

URL: https://pirsa.org/23090021

Pirsa: 23090021 Page 1/49

Instantaneous non-local computation of low T-depth quantum circuits

Florian Speelman

QPV 2023 September 21, 2023

Pirsa: 23090021 Page 2/49

Overview

- Introducing QPV + INQC
- Warm-up: Clifford group protocol
- INQC for circuits with low T count
- The garden-hose model
- INQC for circuits with low T depth

Pirsa: 23090021 Page 3/49

Position Verification

- Prover convince verifiers he is at a particular position
- Assumptions: . nothing faster than speed of light
 - verifiers can coordinate
 - disregard local computation time (for now)

Pirsa: 23090021 Page 4/49

Position Verification

- Prover convince verifiers he is at a particular position
- Assumptions: . nothing faster than speed of light
 - verifiers can coordinate
 - disregard local computation time (for now)
- attackers are a coalition of (fake) provers

Pirsa: 23090021 Page 5/49

Pirsa: 23090021 Page 6/49

Pirsa: 23090021 Page 7/49

Verifiers check that they received the correct quantum state in time

Pirsa: 23090021 Page 8/49

Good protocol means:

$$\|\Phi(\cdot) - (\mathcal{A}_2 \otimes \mathcal{B}_2)(\mathcal{A}_1 \otimes \mathcal{B}_1)(\cdot \otimes \eta)\|_{\diamond} \leq \epsilon$$

Alice and Bob perform an operation with only a single round of simultaneous communication

$$\sigma = \Phi(\rho)$$

General protocol: port-based teleportation

- Harry's Monday talk
- [Beigi König 2011] $O(n \frac{2^{8n}}{\epsilon^2})$ EPR pairs

 But what if we want to do a simpler operation?

Pirsa: 23090021 Page 10/49

Teleportation

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

EPR pair:
$$\frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle$$

Teleportation transfers quantum information using classical bits + EPR pair

The Clifford group

• Generated by
$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$
, $P = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$, $CNOT = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$

• Commutation maps Pauli operators to Paulis (normalizer of Pauli group) e.g. HX = ZH, PZ = ZP, PX = XZP

Interaction with teleportation corrections:

Pirsa: 23090021 Page 12/49

The Clifford group

• Generated by
$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$
, $P = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$, $CNOT = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$

• Commutation maps Pauli operators to Paulis (normalizer of Pauli group) e.g. HX = ZH, PZ = ZP, PX = XZP

Interaction with teleportation corrections:

$$PX^{a}Z^{b} = X^{a}Z^{a \oplus b}P$$

$$HX^{a}Z^{b} = X^{b}Z^{a}H$$

$$CNOTX^{a_{1}}Z^{b_{1}}X^{a_{2}}Z^{b_{2}} = X^{a_{1}}Z^{b_{1}+b_{2}}X^{a_{1}+a_{2}}Z^{b_{2}}CNOT$$

Pirsa: 23090021 Page 13/49

The Clifford group

• Generated by
$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$
, $P = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$, $CNOT = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$

• Commutation maps Pauli operators to Paulis (normalizer of Pauli group) e.g. HX = ZH, PZ = ZP, PX = XZP

Interaction with teleportation corrections:

$$PX^{a}Z^{b} = X^{a}Z^{a \oplus b}P$$

$$HX^{a}Z^{b} = X^{b}Z^{a}H$$

$$CNOTX^{a_{1}}Z^{b_{1}}X^{a_{2}}Z^{b_{2}} = X^{a_{1}}Z^{b_{1}+b_{2}}X^{a_{1}+a_{2}}Z^{b_{2}}CNOT$$

 Not a universal gate set Classical simulation possible

Pirsa: 23090021 Page 14/49

Warmup: clifford group protocol

Send Bob's n qubits back

Pirsa: 23090021 Page 15/49

Warmup: clifford group protocol

Pirsa: 23090021 Page 16/49

Extending the gate set: T gate

T gate (also known as $\frac{\pi}{8}$ gate) is given by $T = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{pmatrix}$ Clifford+T can perform all quantum operations (universal set)

T gate on an uncorrected qubit:

$$TX = PXT$$

 $TZ = ZT$

$$TX^aZ^b|\psi\rangle = P^aX^aZ^bT|\psi\rangle$$

Pirsa: 23090021 Page 17/49

Extending the gate set: T gate

T gate (also known as $\frac{\pi}{8}$ gate) is given by $T = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{pmatrix}$ Clifford+T can perform all quantum operations (universal set)

T gate on an uncorrected qubit:

$$TX = PXT$$

 $TZ = ZT$

$$TX^aZ^b|\psi\rangle = P^aX^aZ^bT|\psi\rangle$$

Handle the unwanted P gate in some way

Pirsa: 23090021 Page 18/49

Overview of results

T-count k

Entanglement $O(n2^k)$

T-depth d

Entanglement $O(n^d)$

(No error, exactly simulates the circuit)

Also see: Monday's talk by Anne → with PR-boxes we can do INQC of all poly-size circuits efficiently

Pirsa: 23090021 Page 19/49

Step 0: Bob teleports his n/2 qubits to Alice, holds $X^{b_x^0}Z^{b_z^0}|\psi_0\rangle$

Step 1.a: Alice performs $C_1 X^{b_x^0} Z^{b_z^0} |\psi_0\rangle = X^{\widehat{b}_x^1} Z^{\widehat{b}_z^1} C_1 |\psi_0\rangle$

Step 1.b: Alice performs T on some wire w_1

$$\begin{array}{c} \mathbf{T}_{w_1}\mathbf{X}^{\widehat{\boldsymbol{b}}_{x}^{1}}\mathbf{Z}^{\widehat{\boldsymbol{b}}_{z}^{1}}C_{1}|\psi_{0}\rangle = P_{w_1}^{b^{1}}\mathbf{X}^{\widehat{\boldsymbol{b}}_{x}^{1}}\mathbf{Z}^{\widehat{\boldsymbol{b}}_{z}^{1}}TC_{1}|\psi_{0}\rangle := P_{w_1}^{b^{1}}\mathbf{X}^{\widehat{\boldsymbol{b}}_{x}^{1}}\mathbf{Z}^{\widehat{\boldsymbol{b}}_{z}^{1}}|\psi_{1}\rangle\\ \text{with }b^{1}\text{ the }w_{1}\text{ entry of }\widehat{\boldsymbol{b}}_{x}^{1} \end{array}$$

Step 1.c: Alice teleports all qubits to Bob

Pirsa: 23090021 Page 20/49

Step 1.d: Bob undoes old Paulis and applies $(P_{w_1}^{b^1})^{-1}$ $(P_{w_1}^{b^1})^{-1} X^{a_x^1} Z^{a_z^1} P_{w_1}^{b^1} | \psi_1 \rangle = Z_{w_1}^{a_1^1 b^1} X^{a_x^1} Z^{a_z^1} | \psi_1 \rangle$

$$Z_{w_1}^{a^1}$$

Step 1.e: Alice corrects extra Z if needed. Now one of the groups is back to starting invariant!

Alice holds the qubits and Bob the teleportation corrections

Pirsa: 23090021

Step 1.d: Bob undoes old Paulis and applies $(P_{w_1}^{b^1})^{-1}$ $(P_{w_1}^{b^1})^{-1} X^{a_x^1} Z^{a_z^1} P_{w_1}^{b^1} | \psi_1 \rangle = Z_{w_1}^{a_1^1 b^1} X^{a_x^1} Z^{a_z^1} | \psi_1 \rangle$

Step 1.e: Alice corrects extra Z if needed. Now one of the groups is back to starting invariant!

→ Alice holds the qubits and Bob the teleportation corrections

Pirsa: 23090021

Step 1.d: Bob undoes old Paulis and applies $(P_{w_1}^{b^1})^{-1}$

$$(P_{w_1}^{b^1})^{-1} X^{a_x^1} Z^{a_z^1} P_{w_1}^{b^1} | \psi_1 \rangle = Z_{w_1}^{a_1^1 b^1} X^{a_x^1} Z^{a_z^1} | \psi_1 \rangle$$

Step 1.e: Alice corrects extra Z if needed. Now one of the groups is back to starting invariant!

Alice holds the qubits and Bob the teleportation corrections

Pirsa: 23090021

Step i: same as step 1, but Alice acts on all 2^{i-1} groups in parallel!

Pirsa: 23090021 Page 24/49

T-depth d

INQC with entanglement $O(n^d)$

Pirsa: 23090021 Page 25/49

Consumes ebit dependent on garden-hose complexity of f Garden-hose complexity of g, h is **linear** in garden-hose complexity of f

Pirsa: 23090021 Page 26/49

The Garden-Hose Model

Pirsa: 23090021 Page 27/49

The Garden-Hose Model

$$x \in \{0,1\}^n$$

$$f: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}$$

f(x, y) = 0 if water exits @ Alice f(x, y) = 1 if water exits @ Bob

 $y \in \{0,1\}^n$

- based on their inputs, players connect pipes with pieces of hose
- Alice also connects a water tap

The Garden-Hose Model

- based on their inputs, players connect pipes with pieces of hose
- Alice also connects a water tap

Pirsa: 23090021 Page 29/49

Example: Inequality on Two Bits

Pirsa: 23090021 Page 30/49

Some facts about Garden-hose complexity

- Inspired by attacks on routing QPV protocol
- Every f has $GH(f) \leq$ exponential
- f in logspace $\Rightarrow GH(f)$ is polynomial
 - Using Barrington's theorem (see Harry's talk)
- exists f with GH(f) exponential (counting)
- for $g \in \{\text{equality, IP, majority}\}:$ $GH(g) \ge n/\log n$
 - using techniques from communication complexity

Pirsa: 23090021 Page 31/49

The garden-hose complexity describes how much entanglement we need to undo a correction. Example:

Pirsa: 23090021 Page 32/49

The garden-hose complexity describes how much entanglement we need to undo a correction. Example:

Pirsa: 23090021 Page 33/49

x = 1

Observation 1: Previous attempt would lose track of qubit, but we can repeat the protocol in reverse to find it again

Pirsa: 23090021 Page 34/49

Observation 2: the garden-hose complexity of computing the Pauli corrections resulting from teleporting a qubit back-and-forth **k** times is linear in **k**.

"The garden-hose complexity of executing a garden-hose protocol of f linear in GH(f)"

Pirsa: 23090021 Page 35/49

Correction to observation 2: The protocol is not just teleportations, but also involves some inverse phase gates if f(x, y) = 1 – what about the Z

correction?

Pirsa: 23090021 Page 36/49

Lemma proof

Alice starts with $P^{f(x,y)}|\psi\rangle$, xBob starts with y

• By **observation 1**: Alice and Bob perform the protocol to undo P, using $2\mathrm{GH}(f)$ EPR pairs

$$X^{g(x',y')}Z^{h(x',y')}|\psi\rangle, x'$$

• By observation 2: $GH(g) \le 4GH(f) + 1$, $GH(h) \le 11GH(f) + 2$

Pirsa: 23090021

T-depth d

INQC with entanglement $O(n^d)$

We now know how handle T gates, put it all together

Pirsa: 23090021 Page 38/49

Proof sketch (INQC for T-depth)

- Every step, Alice holds qubits of the form $\bigotimes_i X^{g_i(x,y)} Z^{h_i(x,y)} | \psi \rangle$ with x,y teleportation corrections of Alice, Bob
- Clifford step: permute and sum functions
 - GH becomes approx $\leq \sum_{i} GH(g_i) + GH(h_i)$

Pirsa: 23090021 Page 39/49

Proof sketch (INQC for T-depth)

- Every step, Alice holds qubits of the form $\bigotimes_i X^{g_i(x,y)} Z^{h_i(x,y)} | \psi \rangle$ with x,y teleportation corrections of Alice, Bob
- Clifford step: permute and sum functions
 - GH becomes approx $\leq \sum_{i} GH(g_i) + GH(h_i)$
- T layer step:
 - For each qubit, $GH(g_i') \le 4GH(g_i') + 1$ and $GH(h_i') \le 11GH(h_i') + 2$

• Together (with some extras): complexity $(68n)^d$

Pirsa: 23090021 Page 40/49

INQC overview

Circuit type	Result
General circuits	[Vaidman 2003, BCFGGOS 2011] $2^{\log(\frac{1}{\epsilon})} 2^{O(n)}$ EPR pairs [Beigi König 2011] $O(n\frac{2^{8n}}{\epsilon^2})$ EPR pairs
Two qubit circuits	[Gonzales Chitambar 2019] $8\log(\frac{1}{\epsilon}) + 22$
Clifford + T-count k	$O(n2^k)$ [Broadbent 2016] $O(n+k)$ with PR boxes (Monday talk)
Clifford + T-count d	$O((68n)^d)$
Small light-cone circuits	[Dolev Cree 2022]

Pirsa: 23090021 Page 41/49

Bonus application: distributed computing

- Quantum computation over spatially separated locations
- Normally executing U takes time 2d (send relevant qubit back and forth)
- Improved to time d, since we can make the communication simultaneous
- Trade entanglement for time
- Faster intelligent routing

Pirsa: 23090021 Page 42/49

Bonus application: Homomorphic encryption

Classical case

Encrypt data so that another party can perform calculations on the encrypted data

Many applications

CHILD

CAT

CHAIR

Tagging

Pirsa: 23090021 Page 43/49

Pirsa: 23090021 Page 44/49

Pirsa: 23090021 Page 45/49

Quantum Homomorphic Encryption

Encrypt *quantum state*, instead of classical data $\rho \to \mathrm{QEnc}(\rho)$

Execute quantum circuit on encrypted data

Quantum one-time pad ↔ uncorrected quantum teleportation We can use the main lemma as a starting point [DSS 2016]

Pirsa: 23090021 Page 46/49

Open questions (many)

- What about other circuit classes?
 - Fermions / match gates, CV, qudits...
- New tricks such as code-routing [Cree May 2023] better than garden-hose model?

Pirsa: 23090021 Page 47/49

Open questions (many)

- What about other circuit classes?
 - Fermions / match gates, CV, qudits...
- New tricks such as code-routing [Cree May 2023] better than garden-hose model?
- Resource-bounded version with more parties? Extending [Dolev 2019]
- Optimal error-dependence for INQC? Most protocols grow $\frac{1}{\epsilon^c}$, is this fundamental? Exception: [Gonzales Chitambar 2019]
- Lower bounds?
- (Details:) $(68n)^d$ is clearly not the right number. Proper gate teleportation easy way to reduce this.

Pirsa: 23090021 Page 48/49

Open questions (many)

- What about other circuit classes?
 - Fermions / match gates, CV, qudits...
- New tricks such as code-routing [Cree May 2023] better than garden-hose model?
- Resource-bounded version with more parties? Extending [Dolev 2019]
- Optimal error-dependence for INQC? Most protocols grow $\frac{1}{\epsilon^c}$, is this fundamental? Exception: [Gonzales Chitambar 2019]
- Lower bounds?

Pirsa: 23090021 Page 49/49