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Abstract: Recently, Akers et al. proposed a non-isometric holographic map from the interior of a black hole to its exterior. Within this model, we
study properties of the black hole S-matrix, which are in principle accessible to observers who stay outside the black hole. Specifically, we
investigate a scenario in which an infalling agent interacts with radiation both outside and inside the black hole. Because the holographic map
involves postselection, the unitarity of the S-matrix is not guaranteed in this scenario, but we find that unitarity is satisfied to very high precision if
suitable conditions are met. If the internal black hole dynamics is described by a pseudorandom unitary transformation, and if the operations
performed by the infaller have computational complexity scaling polynomially with the black hole entropy, then the S-matrix is unitary up to
corrections that are superpolynomially small in the black hole entropy. Furthermore, while in principle quantum computation assisted by
postsel ection can be very powerful, we find under similar assumptions that the S-matrix of an evaporating black hole has polynomial computational
complexity.
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Quantum error correcting code and Holography

AdS/CFT as a QECC: Almheiri, Dong, Harlow (2014)
Holographic code: Pastawski, Yoshida, Harlow, Preskill (2015)
Random tensor network: Hayden, Nezami, Qi, Thomas, Walter, Yang (2016)
Alpha-bits: Hayden, Pennington (2018)
* Quantum minimal surface and QECC: Akers, Pennington (2021)

Recent advance: Non-isometric code, arXiv:2207.06536 [Akers, Engelhardt,
Harlow, Penington, Vardhan (2022)]
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Non-isometric code

Effective Picture Fundamental Picture
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Non-isometric code [Akers et al. (2022)]
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1. Finite BH entropy v~

2. EFT for interior & exterior v~
3. Unitarity v~
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Feature 1: Post-selection

One of the key features of the non-isometric code is post-selection. The rule is
simple: For any state |v') a8, apply

[¥)as = (Ia ® (#|8)|¥) 48

for some fixed vector |¢)s.

[Horowitz, Maldacena (2003), Aaronson (2004), Preskill and Lloyd (2013)]
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Post-selection

Solving NP-complete problems efficiently

X)) i £(x) = 1,

fo 0) =
)10 |x)|0) otherwise.
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Post-select on observing |1).

Making unitary process non-unitary
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The model

Goal: Incorporate realistic features (e.g., Interaction, Polynomially complex U)

e

Holographlc map\L

1. Unitarity preserved for all v and u?
2. Complexity still polynomial?
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Pseudorandom Unitary

A family of efficiently implementable unitaries { Uk} which is computationally
indistinguishable from Haar-random unitaries.

* Similar to pseudorandom states [Harlow, Hayden(2013), Aaronson(2015), Ji, Song, Liu(2017),
Bouland, Fefferman, Vazirani (2021), K, Tang, Preskill(2021), Yang, Engelhardt (2023)], but stronger.

1. Pick random Uk.

2. Run a circuit consisting of 1. Pick a Haar-random U.

poly-copies of Uy and polynomial # 2. Replace Ui by U in the same circuit

of gates. 3. Measure in a simple basis.

3. Measure in a simple basis. 4. Average over the Haar measure.
4. Average over K.

* If the measurement statistics are indistinguishable up to a superpolynomially
small error and { Uk } is efficiently implementable, { U} pseudorandom.
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Pseudorandom Unitary

W
|

Upseudo (|k) ® [1)) = |k) @ Ukl|¥)
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The central hypothesis: “Pseudorandomnesss” of U’

-
J

(for polynomially complex |¢), W, and measurement.)
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The central hypothesis: “Pseudorandomnesss” of U’

Hypothesis: Upon tracing out B, the resulting physical process is computationally
indistinguishable (against polynomially complex experiments) from the process in
which U’ is replaced by a Haar-random unitary, up to an error exponentially small
in log | B.

B R

B: Remaining Black hole

* This is certainly possible if U’ is Haar-random. The nontrivial part of this hypoth-
esis is that there is such U’ of polynomial complexity.
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Postselection vs. Unitarity

|%0) 1

Is this process unitary (or more precisely, isometric) for all v and v?
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[ dman(V)

[Akers et al. (2022)]
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Invoking Pseudorandomness (almost)
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Invoking Pseudorandomness (almost)
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Straightening the legs

|[0)+

IMAX)

* Pro: Everything is unitary (plus measurement)
+ Con: Postselection is applied on a huge system.

+ This reduces the norm by a factor of |r|, yielding a |r|-fold blowup in the error
bound.
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Straigtening the legs, correctly
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Now everything is unitary, and the post-selection is applied to a small (infaller)

subsystem.
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Invoking Pseudorandomness
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Error: ¢(log | B|) ~ superpolynomially small in log |B|.
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(Approximate) Unitarity

For any low-complexity states |¢), and |¢),

(Yle (Yolr (el

< [1e(log |BY),

V) e [Yo)r |}

“Pseudorandomness” of U’ — (Approximate) unitarity
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Complexity

Q: If we throw a robot into the BH, would its evaporation process be suddenly
exponentially complex?

Probably not, but then again, it is unclear why this should be polynomially
complex.

VIr[{MAX|
.

i_.v

o) 1 d

IMAX)

Why? Generally postselection + BQP is PP. [Aaronson (2005)]
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Complexity

|[%0) s

Claim: The complexity of this map is at most

O(dim(/)C),

where C is the complexity of U, v, u, and [10); altogether.

Idea: QSVT [Gilyen, Su, Low, Wiebe (2018)]
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Basic Idea

In quantum computing, there is a very well-known procedure called amplitude
amplification (AA). Suppose we are given a unitary U such that

Ul0...0) = vpl¥) + V1 - plyL),

together with an ability to unambiguously distinguish |¢) and |11 ). AA lets us
prepare |¢) almost deterministically, with the computational cost of O(1/,/p).

[Brassard, Hayer, Mosca; Tapp (2001)]

* Modern version: Quantum Singular Value Transformation [Gilyen, Su, Low,
Wiebe (2018)]
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Probability
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IMAX)/m IMAX) .,

Postselection success probability =~ 1/|/|> — Overhead = O(|/]).

Using Quantum Singular Value Transformation [Gilyen, Su, Low, Wiebe (2018)],
the claim follows.
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Problems

« The Rule: We applied the holographic map of Akers et al. to the setup with
interaction. Is this okay?

» The unitarity in the fundamental picture is violated, but by an exponentially small
amount. Accounting for quantum gravity effects, the exact unitarity may be
restored.

« A different proposal: [DeWolfe, Higginbotham (2023)]

+ If we throw in 1000 qubits interacting with R and r, our upper bound for
complexity is e°('°9¢C. Can we do better?

- If we view U’ as a black box, our bound is essentially optimal.
» Polynomial (and additive) overhead is more physically reasonable, but it looks
like doing so requires knowledge about the structures of U’.

* How to construct pseudorandom unitaries?

+ Challenge: Apply random phases in two complementary bases £ times.
Quanitify the closeness of this ensemble to Haar-random unitaries.

+ For instance, compute the frame potential.
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