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Abstract: The Sachdev-Y e-Kitaev (SYK) model is a simple toy model of holography that has seen widespread study in the area of quantum gravity.
It is particularly notable for its feasibility of ssmulation on near-term quantum devices. Recently, Swingle et a. introduced a sparsified version of the
SYK model and analyzed its holographic properties, which are remarkably robust to deletion of Majorana interaction terms. Here we analyze its
spectral and quantum chaotic properties as they pertain to holography as well as how they scale with sparsity and system size through large scale
numerics. We identify at least two transition points at which features of chaos and holography are lost as the model is sparsified, and above which
all important features are preserved, which may serve as guidelines for future experiments to simulate quantum gravity. Additionally, we apply these
analyses to the SYK model that was recently experimentally simulated on the Google Sycamore quantum processor, which itself was a highly
sparsified SYK model obtained through a machine learning algorithm incorporating mutual information signatures of a traversable wormhole.
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Sachdev—Ye—Kitaev model
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* N Majorana fermions interacting all-to-all, g=4

* Gaussian-random coupling, averaged over many samples
* Quantum chaotic & RMT; Holographic dual is JT gravity

* Feasible for simulation on near-term quantum devices

[1,2]
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Sparse SYK
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* Sparse — each term is subject to probability of deletion [xu, Susskind, Su, Swingle 2020]
* p=1is full SYK

* Related to effective average degree k by p = (]*TN)
* Huge computational speedups (p=1 - p=0.1): :

* N=18: 2h—>13m, N=20: 5h—>27m, N=22: 12h—>1h, N=26: 86h—>11h 3]
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Nearest-neighbor gap ratio

r = <1‘nin (Ai S el )\i)>
Ak
N = 18 20 a2 24 20 28 30
N mod 8 2 4 6 0 2 4 6
Ensemble GUE GSE GUE GOE GUE | GSE | GUE
i 0.5996(1) | 0.6744(1) 0.5307(1)
Tt 2 bk 0.4116(5) 0.4235(5)

» Average of ratios of subsequent gaps in spectrum (each at most 1)

* Useful and common numerical diagnostic of RMT & quantum chaos;

one established literature value per ensemble

* Robust for even a single sample, but we average over samples anyway

* Directly computed values differ due to “blocks” (parity sectors)
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Spectral form factor (SFF)
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* Fourier transform of the pair correlation function, normalized by L = dim H

* Another useful and common numerical diagnostic of RMT/quantum chaos,
measurable in experiments [Joshi et al 2021]

* Dip, Ramp, Plateau

* Ramp time t,, ., corresponds to inverse of energy scale within which RMT is a
well-fitting descrlptlon relevant in black hole duals

[6,7,12]
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G . |
aussian-filtered SFF
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* Apply Gaussian window to spectrum, tune its width o

* Obfuscated early ramp revealed — increased sensitivity to detecting changes
[7]
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* Ramp deviates as model is sparsified, i.e. as p decreases

* Two transition points: (1) ramp first changes, (2) ramp gone

 To quantify deviation, take ratio of ramp minima (relative error)

Pirsa: 23080024



SFF data, p,
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* Very resilient to sparsity, fairly sharp transition at which chaos first starts to
change — What is really needed for emergent gravity?

* Significant implications for computational feasibility
* We call this point p,
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Results

Fit Plot 1(xX) = a*24/(x*3-6"x"2+11"x-6)+b
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+ Best curve fitis p1 ~ N/ (%))
* There appears to be a certain effective degree k at which chaos changes (~8.7)
* Compare [3]’s conjectured min ~4 to exhibit maximally chaotic gravitational sector at low temp

* Can serve as a tangible guideline for faithful experimental simulation of holography
on near-term quantum devices
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Results
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* Ramp’s complete disappearance is complicated — cannot use SFF directly
* Instead, use gap ratio, which probes same phenomenon (spectral rigidity)
* We find an even sharper transition, so use a ~1% threshold relative error
* Best fitis p» ~ N/('}) again, another average degree (~2.3)
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Results

Fit Plot 1(x) = a*x*b+c
T T T
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* Scaling of the ramp time with sparsity is also of interest
* Relative error threshold of 20% (but resulting fit is threshold-independent)
* Scaling is tyamp ~ 1/p* for all tested N
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N=22, p=1.00
Degeneracy ‘ # samples ‘ proportion ‘ r ‘ stdev

Emel"gence Of degeneracies ofoid | 20000 || 1 | 0.5997 | 0.009

* When SYK gets very sparse (at p,),
each individual sample can have a different
degeneracy, and accordingly a different r
value, than expected

* Gap ratios vary widely — standard deviation
increases by factor of 10

* Neither individual gap ratios nor average match
expected literature values

* Within each degeneracy class, avg r still
decreases with sparsity

* What’s going on here? Is it interesting?

Pirsa: 23080024 Page 13/23



Emergence of degeneracies

* When SYK gets very sparse (at p,),
each individual sample can have a different
degeneracy, and accordingly a different r
value, than expected

* Gap ratios vary widely — standard deviation
increases by factor of 10

* Neither individual gap ratios nor average match
expected literature values

* Within each degeneracy class, avg r still
decreases with sparsity

* What’s going on here? Is it interesting?
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N=22 p=1.00

Degeneracy ‘ # samples ‘ proportion ] r ‘ stdev
2-fold | 20,000 | 1 | 0.5997 | 0.009
N=22 p=001
Degeneracy | # samples ‘ proportion | T | stdev
2-fold 19,999 0.99 0.5994 | 0.011
4-fold ‘ 1 ‘ 0.00 ‘ 0.6633 { N/A
N=22, p=0.005
Degeneracy | # samples | proportion ¥ stdev
2-fold 19395 1 0.5786 | 0.065
4-fold 597 0.03 0.5831 | 0.128
8-fold T 0.00 0.2796 | 0.144
16-fold 1 0.00 0.5607 | N/A
N=22, p=0.003
Degeneracy | # samples | proportion T stdev
2-fold 10537 1 0.4464 | 0.151
4-fold 5672 0.54 0.3563 | 0.170
8-fold 2205 0.21 0.2683 | 0.141
16-fold 1035 0.10 0.2492 | 0.140
>32-fold 551 0.05 0.1372 | 0.163
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[ 2 -fold
I 4-fold
C——"18-fold

Emergence of degeneracies

I 16-fold
[ 32+-fold

# samples

* When SYK gets very sparse (at p,),
each individual sample can have a different
degeneracy, and accordingly a different r
value, than expected

* Gap ratios vary widely — standard deviation P
increases by factor of 10 6} JrEo—o@mcamo—o—o—9

* Neither individual gap ratios nor average match '
expected literature values

* Within each degeneracy class, avg r still
decreases with sparsity

—=— 2-fold
—=— 4-fold
8-fold

* What’s going on here? Is it interesting? il o sprrold] |
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Analysis of recent experimental
simulation of holography

“Traversable Wormhole Dynamics on a Quantum Processor”

Jafferis, Zlokapa, Lykken, Kolchmeyer, Davis, Lauk, Neven, Spiropulu
Nature 612 p.51-55, Dec 2022

(Based on [9,10], see also [11])
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Three machine-learned models

Main: H = - 0.360 ¢%yp%y°  S16: H = - 0.35¢ ¢ %¢%y®  S17: H =+ 0.60p1y3yiy®
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* 7/10 Majoranas * 8/10 Majoranas
* 5/210 terms * 6/210terms * 10/10 Majoranas
* “aloss function based only on * same loss function as Main, but . .
the error from the “unlike the Hamiltonian in the 8/210 terms
asymmetric mutual main text, does not have all + “aloss function designed to
information signature of a commutin%terms. It successfully optimize for new physics. We
traversable wormhole and on preserves the mutual information learn a Hamiltonian with a
a regularization penalty to dynamics demonstrating perfect teleportation signal larger than
induce sparsity” size winding, and is consistent that of the SYK model by
with other gravitational maximizing the difference in
signatures mutual information”
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Initial observations

* Low N, only one sample — how to understand chaos & holography?

* e.g. “Wormholes without averaging” — Saad, Shenker, Stanford, Yao 2021
(but only looks at typical members of ensemble)

* Very highly sparsified
* p,; =0.31 for N=10
* p,=0.11 for N=10
* Effective sparsity 5/210 = 0.024

* Appears to be well past both transition points (although these are for
ensembles)
e Simply not enough terms for emergent gravity?
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Gap ratio:
full/sparse SYK vs. simulated

* Literature value for SYK N=10 (GUE): 2-fold degeneracy, r = 0.5996
* Recall: robust for even a single sample

* Main: 4-fold, r=0.5178
e S16: 2-fold, r =0.5681
e S17: unusual symmetry
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SFF

* Appears to be a very atypical member
of the (sparse) SYK ensemble

* Sparse SYK at p=5/210=0.024:
ensemble-averaged SFF has no ramp,
only plateau

* Attempted to introduce ensemble
averaging with many strategies

* Ensemble-averaging in a neighborhood
around the machine-learned sample’s
coefficients (shifting j’s Gaussians’ means)
produces noisy SFF that only slightly
resembles a tiny ramp-like dip

* All others are just plateau
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Open questions

* What is the core necessity for gravity to emerge from quantum
mechanics, if all interactions are not?

* Can we consider a single un-averaged sample to be holographic or not
(e.g., if it is not typical of the full ensemble)?

* How should we think about averaging in ensembles whose members have
differing properties from each other, i.e. near transition points?

* What even is averaging?

* How do we understand holography of SYK for p, < p <p;?
* Clearly not the same as full SYK, but is it still holographic in a different way?
* Machine-learned model in [8] may live in this regime

* How do we understand the emergence of degeneracies and
fluctuation of gap ratio near p,?
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Future research

* SFF, gap ratio, and p, & p, may serve as diagnostic tools and tangible
guidelines for how sparse one can go to enable faithful simulation of

holography and quantum gravity
* Currently pushing numerics to larger N
* Full SYK not even feasible — sparse SYK is feasible and has same properties
* Finite size analysis —are p, , critical?

* Explore p, < p < p, holography, and p, degeneracy emergence

 Carry out same ML model in [8] for larger system size
* Aforementioned issues simply due to insufficiently large N?

* Modify ML model to account for presence of ramp and/or other
guantum chaotic & RMT features
* Could also introduce noise and average over many learned samples
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