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|. Motivation from Ryu-Takayanagi
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Consider a familiar TFD—Ixi‘iEE getup for discussing Ryu-Takayanagi Entropy

SRT - ﬁ + ..
If there is a dual CFT, we understand there to be a Hilbert space Hz®H 5, and S describes
the entropy of the associated density matrix on either factor.

How much of this story can we derive from the bulk without invoking AdS/CFT?
Two recent developments suggest we might be able to do quite a bit:

1) Page curve story where B is a non-gravitating bath.

2) Chandrasekaran-Longo-Penington-Witten & P-W type Il algebras and their entropy
Without invoking AdS/CFT, both give entropies that can be computed from RT (in an appropriate

limit for #2).
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Il. Axioms for a (Euclidean) bulk path integral

What do we mean by a bulk theory?
We would like to work at finite couplings; i.e., not in the semiclassical limit.

We will assume that some clever person has given us a UV-completion

of some bulk quantum gravity theory which contains something we can call a Euclidean path

integral. It does not matter if this is actually anything like a sum over geometries.
However, we assume it to satisfy certain axioms.
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Il. Axioms for a (Euclidean) bulk path integral

1) We assume there is some space X %of smooth manifolds with smooth fields that define
boundary conditions for our bulk path integral. As a result, the path integral defines a
function

*
(: X2 C

2) (Reality) [M)]* = [¢(M7)]
3) (Reflection positivity) {(M) >0 when M is appropriately reflection-symmetric.

4) (Continuity under changing the length of a cylinder)
limeaeo ((Me) = ((Meo)

5) (Factorization) {(M; U M,) = {(M,) {(M,)

All of these of course hold if there is a “dual” CFT, but the above are much weaker than the full axioms for a CFT!
How much of the structure of a CFT do we really need to derive something like R-T and to show it to be an

entropy?
»
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Il. Axioms for a (Euclidean) bulk path integral

1) We assume there is some space X of smooth manifolds with smooth fields that define
boundary conditions for our bulk path integral. As a result, the path integral defines a
function

(i X2 C
2) (Reality) [C(M)]* = [¢(M™)]

3) (Reflection positivity) {(M) >0 when M is appropriately reflection-symmetric.

4) (Continuity under changing the length of a cylinder)
lime,. (M) = (M) C., © M.,

e [o,eo
5) (Factorization) {(M; U M,) = {(M,) {(M5)

Comment on Factorization Axiom: It would be nicer to derive factorization, or to derive “effective factorization”
(baby universe superselection sectors, aka a-sectors, so that the full path integral decomposes into a sum over

{’s that factorize). But this is hard due to issug [ il nbounded operators.
| will try to comment further on this below. SHE R 2
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lll. The Hilbert space sector H 5,5

— " e ™
C=B x[0,6] CJ/ }* ,_.»J| C =B Xx|[0,€ 1]
= ) —

_ \ .
Consider rimmed manifolds a, b € Y&, with boundary B U B.

Call the space of such rimmed manifolds YBd,_lg

L. =8 X [0,62]
There exist states |a >,|b > € H g5 and their

inner product is
<alb>= {(Mgp)

Remarks:

1) Points on B U B should be thought of as being labelled so that the gluing
IS unique.

2) We compute only inner products of states with matching rims (same B’s).
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IV. Operators, Algebras and Traces

Let us specialize to the diagonal case B L B and consider two rimmed surfaces a, b € Y2 5.
Here the left- and right- boundaries are distinguished, so we shall call them B;, By (or just L,R),

even though they are identical.

Then we can define operators a;, dgr on Hg g via

.
a,|b >

ag,

-
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IV. These operators are bounded!

Let us use a, b € Y& 5 to define states in HppL50uB- X
Call the boundaries B, Bg1, B2, B2, and consider the following states

L1 “R1 L2 "R2
P C o

R2
la >

|aL2R1: biir2 > = W

b >

Norms: < apzp1, br1r21a12r1, brarz > = < @11, Prar2|811r1, bror2 > =< ala >< blb >

a b*

Inner Product: < a;1r1,b12r2|012R1, Pr1gz > = M
a
|b >Ltwe =:< Ar2r1, Pr1r21911R1, PL2R2 >
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IV. These operators are bounded!

X
Let us use a, b € Y& 5 to define states in HppL50u5-
Call the boundaries B4, Bg1, B2, B2, and consider the following states

L1 " R1 L2 "R2
apig1,brarz > = i 4 XX

R2
la >

|aL2R1: biir2 > = W

b >

Norms: < ayzp1, br1r21a12r1, brarz > = < @11, Prar2|11r1, Pror2 > =< ala >< b|b >

a* b*

Inner Product: < a;1r1,b12r2|012R1, Pr1g2 > = M
a
|b >Ltwe =:< ar2r1, Pr1r21201R1, PL2R2 >
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IV. These operators are bounded!

Apply Cauchy-Schwarz: | <cl|d >| < \/< cle >< d|d >

<b*|afa,|b>< J(<ala><blb>)2 =<ala><blb>
I

i.e., |‘|'a;faL ||< < ala>, soouroperators are bounded!

Norms: < apzp1, br1r21a12r1, brarz > = < @11, brar2|r1r1, bror2 > =< ala >< blb >

a* b*

Inner Product: < a;1r1,b12r2|012R1, Pr1p2 > = w
a
|b >1twe =:< ar2r1,Pr1r21911R1, PL2R2 >
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V. Von Neumann Algebras and traces

The left- and right- representations on H 5 can now be completed to
define von Neumann algebras A;, Ap.

These algebras have useful traces!

For a surface a, Y&, g , define tr(a*a) = < ala > = sup, < C, |&‘I&L| Ce > /11Ce ||
Traces on VN algebras need only be defined on positive elements, of the form a*a.

<ala><blb> > <b*|aja,|b>=<b"a’|ab >

tr(a*a) tr(b*b) = tr(b*a*ab) (*) “The Trace Inequality”
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IV. Operators, Algebras and Traces

Let us specialize to the diagonal case B L B and consider two rimmed surfaces a, b € Y2 5.
Here the left- and right- boundaries are distinguished, so we shall call them B;, By (or just L,R),

even though they are identical.

Then we can define operators a;, dg on Hpg 5 via

. G
 ab>
ajy,

I

- | ,
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V. Von Neumann Algebras and traces

The left- and right- representations on Hz ;5 can now be completed to
define von Neumann algebras A;, Apg.

These algebras have useful traces!
For a surface a, Y&,z , define tr(a*a) =< ala > = sup, < C, |&‘I&L| Ce >/11Ce ||
Traces on VN algebras need only be defined on positive elements, of the form a*a.

<ala><blb> > <b*|aja,|b>=<b"a’|ab >

tr(a*a) tr(b*b) = tr(b*a*ab) (*) “The Trace Inequality”

And now the magic..... The final form sup, < C, &I&L| C. > /||Cc ||? is well-defined on the

vN algebra (and gives a faithful, normal, semi-finite trace).

Also, when tr(a*a) is finite, there is still a state |a > of norm tr(a*a). So C-S argument still
works, and (*) in fact still holds on A;,Ag. (Thanks, Xil)
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V. Von Neumann Algebras and traces

Theorem Review (familiar from other talks...):

Every vN algebra is a direct sum of “vN factors” (vN algebras with trivial

centers)
Every vN factor is of type |, II, or Il
There is no (faithful, normal, semifinite) trace on a type lll factor.

So our factors are not type IlI!!!!
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V. Von Neumann Algebras and traces

Theorem Review (familiar from other talks...):

Every vN algebra is a direct sum of “vN factors” (vN algebras with trivial

centers)
Every vN factor is of type |, II, or Il
There is no (faithful, normal, semifinite) trace on a type lll factor.

So our factors are not type IlI!!1!
For any such trace on a type Il factor, there are non-trivial projections P with

arbitrarily small trace. But this is not allowed by our trace inequality:

tr(a*a) tr(b*b) = tr(b*a*ab) (*) “The Trace Inequality”
Fora = b = P w/ P? = P we find
tr(a*a) tr(b*b) = [tr(P)]* = tr(b*a”ab) = tr(P),

tr(P)=0 = P =0
Otherwise, tr(P) > 1

Our algebras are o must be type I!!!
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VI. Quick summary of further results

The (von Neumann or Rieffel) bicommutant theorem then tells us that A;, Ay are
commutants.

Consider the central subalgebras Z; c A; , where Z; = {z: az =zaVa € A,},
and similarly Z, € Az . Notethat Z; = Z; = Z. Diagonalizing Z yields eigenspaces Hj5 5
preserved by A;, Ap such that

Hpup = f@ dz Hgup -

where A7 annihilates 7/, for z # z'and A%,z has trivial center.
It is thus a type | von Neumann factor with commutant A% on Hj 5.

Z — Z Z
SO, }[BUB - j{BLJBL ® }[BUBR

Quantization of tr(P) then requires that for;leach zthereisann, € Z* such that for
}[BLIBL =€ ®5{BUBL

And a € A} we have tr(a*a) = TTz(lcnz @ a*a ), where is the usual Hilbert space trace on
}TBZUB’L summing diagonal matrix elem .basis: Tr,(A) = Y; <ilali>

Pirsa: 23080023 Page 17/24



VI. Quick summary of further results

Thus for a density matrix p, on J-Tg,JB,L we have

S(pz) = —tr(pzInp;) = _ﬁz(pz Inp,) = S:z(pz)

Furthermore, for a surface a, Y 5 that defines a state |a >, we can define p = (a*a),

p:

I

so that tr(p™) is computed via “the gravitational replica trick.”
Thus by LM, if there is a limit described by semiclassical bulk gravity, then

S(p )= % + .. (RT)
But from above, if p, give the probabilities for the state |a > to be in the sector H%,5, we have

S(p)= [ dz p,5,(B,) for 'p,=1cnz ®p,

«a P »
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VII. Summary

Assume finite on smooth boundaries, reality, reflection positivity, continuity, and factorization.
Then

There is a bulk Hilbert space associated with boundary B L BI

There are right and left von Neumann algebras that act on this Hilbert
space.

They are type I! This means that they contain only type | factors.

As a result, the Hilbert space is a sum of of terms that factorize

— z
Hpup = fEB dz Hpup
zZ — zZ Z
Hpup = Hpupr ® Hpupr

Augmenting this construction with finite-dimensional maximally-entangled
“hidden sectors” then gives a standard “state counting” interpretation of

the RT entropy.
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VI. Quick summary of further results

The (von Neumann or Rieffel) bicommutant theorem then tells us that A;, Ay are
commutants.

Consider the central subalgebras Z; c A; , where Z; = {z: az = zaVa € A,},
and similarly Z, € Az . Notethat Z; = Z; = Z. Diagonalizing Z yields eigenspaces Hj5 5
preserved by A;, Ag such that

Hpup = f@ dz Hgup -

where AZ annihilates 7, for z # z'and A%, 5 has trivial center.
It is thus a type | von Neumann factor with commutant A% on HE, .

Z — zZ zZ
SO, }[BUB . j{BLJBL ® }[BUBR

Quantization ofitr(P) then requires that for;leach zthereisann, € Z* such that for
}[BLJBL =€ ®7{BUBL

And a € A} we have tr(a*a) = TTZ(].(C?IZ @ a*a ), where is the usual Hilbert space trace on
ﬁgUB’L summing diagonal matrix elem .basis: T1,(A) == Y; <ilali>
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V. Von Neumann Algebras and traces

The left- and right- representations on H 5 can now be completed to
define von Neumann algebras A;, Ap.

These algebras have useful traces!
For a surface a, Y&, g , define tr(a*a) = < ala > = sup, < C, |&‘I&L| Ce >/11Ce |I?
Traces on vN algebras need only be defined on positive elements, of the form a*a.

<ala><blb> = <b*|aja,|b>=<b"a’|ab >

tr(a*a) tr(b*b) = tr(b*a*ab) (*) “The Trace Inequality”

And now the magic..... The final form sup, < C, &I&L| C. > /||Cc ||? is well-defined on the

VN algebra (and gives a faithful, normal, semi-finite trace).

Also, when tr(a*a) is finite, there is still a state |a > of norm tr(a*a). So C-S argument still
works, and (*) in fact still holds on A;,Ag. (Thanks, Xil!)
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VI. Quick summary of further results

Thus for a density matrix p, on ﬁg,JB,L we have

S(pz) = —tr(pzInp;) = _ﬁz(pz Inp,) = S:z(pz)

Furthermore, for a surface a, Y& 5 that defines a state |a >, we can define p = (a*a),

p:

I
so that tr(p™) is computed via “the gravitational replica trick.”
Thus by LM, if there is a limit described by semiclassical bulk gravity, then

S(p )= % + .. (RT)
But from above, if p, give the probabilities for the state |a > to be in the sector H%,5, we have

S(p)= [ dz p,5,(B,) for 'p,=1cnz ®p,

«“ P » @
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|. Motivation from Ryu-Takayanagi

"

Consider a familiar TFD—I}Eegetup for discussing Ryu-Takayanagi Entropy

SRT — ﬁ + ..
If there is a dual CFT, we understand there to be a Hilbert space Hz®H 5, and S describes
the entropy of the associated density matrix on either factor.

How much of this story can we derive from the bulk without invoking AdS/CFT?
Two recent developments suggest we might be able to do quite a bit:

1) Page curve story where B is a non-gravitating bath.

2) Chandrasekaran-Longo-Penington-Witten & P-W type Il algebras and their entropy
Without invoking AdS/CFT, both give entropies that can be computed from RT (in an appropriate
limit for #2).
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VI. Quick summary of further results

The (von Neumann or Rieffel) bicommutant theorem then tells us that A;, Ay are
commutants.

Consider the central subalgebras Z; c A; , where Z; = {z: az =zaVa € A,},
and similarly Z, € Az . Notethat Z; = Z; = Z. Diagonalizing Z yields eigenspaces Hj 5
preserved by A;, Agr such that

Hpup = feB dz Hgup -

where AZ annihilates 7, for z # z'and A%,z has trivial center.
It is thus a type | von Neumann factor with commutant A% on Hj 5.

Z — Z zZ
SO, %BUB - j{BUBL ® }[BLJBR

Quantization of tr(P) then requires that for;leach zthereisann, € Z* such that for
g{BuBL =G ®5{BUBL

And a € A} we have tr(a*a) = Trz(l nz ® a*a ), where is the usual Hilbert space trace on
J’-Z”EUB’L summing diagonal matrix elem .basis: T1,(A) = Y; <ilali>
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