Title: Type I Von Neumann algebras from bulk path integrals: RT as entropy without AdS/CFT

Speakers: Donald Marolf

Collection: It from Qubit 2023

Date: August 02, 2023 - 5:30 PM

URL: https://pirsa.org/23080023

Pirsa: 23080023 Page 1/24

Type I von Neumann algebras from bulk Path Integrals: RT as entropy w/o AdS/CFT

Donald Marolf (UCSB)

Work with Eugenia Colafranceschi, Xi Dong, and Zhencheng Wang

Pirsa: 23080023 Page 2/24

I. Motivation from Ryu-Takayanagi

Consider a familiar TFD-like setup for discussing Ryu-Takayanagi Entropy

$$S_{RT} = \frac{A}{4G} + \dots$$

If there is a dual CFT, we understand there to be a Hilbert space $\mathcal{H}_B \otimes \mathcal{H}_{\bar{B}}$, and S_{RT} describes the entropy of the associated density matrix on either factor.

How much of this story can we derive from the bulk without invoking AdS/CFT? Two recent developments suggest we might be able to do quite a bit:

- 1) Page curve story where B is a non-gravitating bath.
- 2) Chandrasekaran-Longo-Penington-Witten & P-W type II algebras and their entropy Without invoking AdS/CFT, both give entropies that can be computed from RT (in an appropriate limit for #2).

II. Axioms for a (Euclidean) bulk path integral

What do we mean by a bulk theory? We would like to work at finite couplings; i.e., not in the semiclassical limit.

We will assume that some clever person has given us a UV-completion of some bulk quantum gravity theory which contains something we can call a Euclidean path integral. It does not matter if this is actually anything like a sum over geometries. However, we assume it to satisfy certain axioms.

Pirsa: 23080023 Page 4/24

II. Axioms for a (Euclidean) bulk path integral

1) We assume there is some space X^d of smooth manifolds with smooth fields that define boundary conditions for our bulk path integral. As a result, the path integral defines a function

$$\zeta\colon X^d\to\mathbb{C}$$

- 2) (Reality) $[\zeta(M)]^* = [\zeta(M^*)]$
- 3) (Reflection positivity) $\zeta(M) > 0$ when M is appropriately reflection-symmetric.
- 4) (Continuity under changing the length of a cylinder) $\lim_{\epsilon \to \epsilon_0} \zeta(M_{\epsilon}) = \zeta(M_{\epsilon_0}) \qquad \qquad C_{\epsilon_0} \subset M_{\epsilon_0}$ $C_{\epsilon_0} = B \times [0, \epsilon_0]$
- 5) (Factorization) $\zeta(M_1 \sqcup M_2) = \zeta(M_1) \zeta(M_2)$

All of these of course hold if there is a "dual" CFT, but the above are much weaker than the full axioms for a CFT! How much of the structure of a CFT do we really need to derive something like R-T and to show it to be an entropy?

II. Axioms for a (Euclidean) bulk path integral

1) We assume there is some space X^d of smooth manifolds with smooth fields that define boundary conditions for our bulk path integral. As a result, the path integral defines a function

$$\zeta\colon X^d\to\mathbb{C}$$
 2) (Reality)
$$[\zeta(M)]^*=[\zeta(M^*)]$$

- 3) (Reflection positivity) $\zeta(M) > 0$ when M is appropriately reflection-symmetric.
- 4) (Continuity under changing the length of a cylinder) $\lim_{\epsilon \to \epsilon_0} \zeta(M_{\epsilon}) = \zeta(M_{\epsilon_0}) \qquad \qquad C_{\epsilon_0} \subset M_{\epsilon_0}$ $C_{\epsilon_0} = B \times [0, \epsilon_0]$ 5) (Factorization) $\zeta(M_1 \sqcup M_2) = \zeta(M_1) \zeta(M_2)$

Comment on Factorization Axiom: It would be nicer to *derive* factorization, or to derive *"effective factorization"* (baby universe superselection sectors, aka α -sectors, so that the full path integral decomposes into a sum over ζ 's that factorize). But this is hard due to issues associated with unbounded operators.

I will try to comment further on this below.

III. The Hilbert space sector $\mathcal{H}_{B\sqcup ar{B}}$

$$C = B \times [0, \epsilon_1]$$

Consider *rimmed* manifolds $a, b \in Y^d_{B \sqcup B}$ with boundary $B \sqcup \overline{B}$. Call the space of such rimmed manifolds $Y^d_{B \sqcup \overline{B}}$

There exist states |a>, $|b>\epsilon\,\mathcal{H}_{B\sqcup \bar{B}}$ and their inner product is

$$\langle a|b \rangle = \zeta(M_{a^*b})$$

Χ

Х

- 1) Points on $B\sqcup \bar B$ should be thought of as being labelled so that the gluing is unique.
- 2) We compute only inner products of states with matching rims (same B's).

X

IV. Operators, Algebras and Traces

Let us specialize to the diagonal case $B \sqcup B$ and consider two rimmed surfaces $a, b \in Y_{B \sqcup B}^d$. Here the left- and right- boundaries are distinguished, so we shall call them B_L, B_R (or just L,R), even though they are identical.

Then we can define operators \widehat{a}_L , \widehat{a}_R on $\mathcal{H}_{B\sqcup B}$ via

Pirsa: 23080023 Page 8/24

IV. These operators are bounded!

Let us use $a, b \in Y^d_{B \sqcup B}$ to define states in $\mathcal{H}_{B \sqcup B \sqcup B \sqcup B}$.

Call the boundaries $B_{L1}, B_{R1}, B_{L2}, B_{R2}$, and consider the following states

$$Norms: < a_{L2R1}, b_{L1R2} | a_{L2R1}, b_{L1R2} > \ = \ < a_{L1R1}, b_{L2R2} | a_{L1R1}, b_{L2R2} > \ = \ < a | a > < b | b > \$$

Inner Product:
$$\langle a_{L1R1}, b_{L2R2} | a_{L2R1}, b_{L1R2} \rangle =$$

$$= < b^* \left| \hat{a}_L^\dagger \hat{a}_L \right| b > = real \& positive =: < a_{L2R1}, b_{L1R2} | a_{L1R1}, b_{L2R2} >$$

Pirsa: 23080023 Page 9/24

IV. These operators are bounded!

Let us use $a, b \in Y_{B \sqcup B}^d$ to define states in $\mathcal{H}_{B \sqcup B \sqcup B \sqcup B}$. Call the boundaries $B_{L1}, B_{R1}, B_{L2}, B_{R2}$, and consider the following states

$$Norms: < a_{L2R1}, b_{L1R2} | a_{L2R1}, b_{L1R2} > \ = \ < a_{L1R1}, b_{L2R2} | a_{L1R1}, b_{L2R2} > \ = \ < a|a> < b|b>$$

Inner Product:
$$\langle a_{L1R1}, b_{L2R2} | a_{L2R1}, b_{L1R2} \rangle =$$

$$= < b^* \left| \hat{a}_L^\dagger \hat{a}_L \right| b > = real \& positive =: < a_{L2R1}, b_{L1R2} | a_{L1R1}, b_{L2R2} >$$

Pirsa: 23080023 Page 10/24

IV. These operators are bounded!

Apply Cauchy-Schwarz:
$$|< c|d> | \leq \sqrt{< c|c> < d|d>}$$

$$< b^* \left| \hat{a}_L^{\dagger} \hat{a}_L \right| b > \le \sqrt{(< a|a > < b|b >)^2} = < a|a > < b|b >$$

i.e., $|\hat{a}_L^{\dagger} \hat{a}_L| \le \langle a|a \rangle$, so our operators are bounded!

$$Norms: < a_{L2R1}, b_{L1R2} | a_{L2R1}, b_{L1R2} > \ = \ < a_{L1R1}, b_{L2R2} | a_{L1R1}, b_{L2R2} > \ = \ < a|a> < b|b>$$

Inner Product:
$$\langle a_{L1R1}, b_{L2R2} | a_{L2R1}, b_{L1R2} \rangle =$$

$$= < b^* \left| \hat{a}_L^\dagger \hat{a}_L \right| b > = real \& positive =: < a_{L2R1}, b_{L1R2} | a_{L1R1}, b_{L2R2} >$$

Pirsa: 23080023 Page 11/24

The left- and right- representations on $\mathcal{H}_{B \sqcup B}$ can now be completed to define von Neumann algebras \mathcal{A}_L , \mathcal{A}_R .

These algebras have useful traces!

For a surface a, $Y_{B \sqcup B}^d$, define $tr(a^*a) \coloneqq \langle a|a \rangle = sup_{\epsilon} \langle C_{\epsilon} | \hat{a}_L^{\dagger} \hat{a}_L | C_{\epsilon} \rangle / ||C_{\epsilon}||^2$ Traces on vN algebras need only be defined on positive elements, of the form a^*a .

$$< a|a> < b|b> \ge < b^* |\hat{a}_L^{\dagger}\hat{a}_L| b> = < b^* a^* |ab>$$

 $tr(a^*a) \ tr(b^*b) \ge tr(b^*a^*ab)$ (*) "The Trace Inequality"

$$tr(a^*a) = \underbrace{a^*}_{a \times X}$$

Pirsa: 23080023 Page 12/24

IV. Operators, Algebras and Traces

Let us specialize to the diagonal case $B \sqcup B$ and consider two rimmed surfaces $a, b \in Y_{B \sqcup B}^d$. Here the left- and right- boundaries are distinguished, so we shall call them B_L, B_R (or just L,R), even though they are identical.

Then we can define operators \widehat{a}_L , \widehat{a}_R on $\mathcal{H}_{B\sqcup B}$ via

Pirsa: 23080023 Page 13/24

The left- and right- representations on $\mathcal{H}_{B \sqcup B}$ can now be completed to define von Neumann algebras \mathcal{A}_L , \mathcal{A}_R .

These algebras have useful traces!

For a surface $a, Y_{B \sqcup B}^d$, define $tr(a^*a) := \langle a|a \rangle = \sup_{\epsilon} \langle C_{\epsilon} \left| \hat{a}_L^{\dagger} \hat{a}_L \right| C_{\epsilon} \rangle / ||C_{\epsilon}||^2$ Traces on vN algebras need only be defined on positive elements, of the form a^*a .

$$< a|a> < b|b> \ge < b^* \left| \hat{a}_L^{\dagger} \hat{a}_L \right| b> = < b^* a^* |ab>$$

$$tr(a^*a) \ tr(b^*b) \ge tr(b^*a^*ab)$$
 (*) "The Trace Inequality"

And now the magic..... The final form $\sup_{\epsilon} < C_{\epsilon} \left| \hat{a}_L^{\dagger} \hat{a}_L \right| C_{\epsilon} > /||C_{\epsilon}||^2$ is well-defined on the vN algebra (and gives a faithful, normal, semi-finite trace).

Also, when $tr(a^*a)$ is finite, there is still a state |a> of norm $tr(a^*a)$. So C-S argument still works, and (*) in fact still holds on $\mathcal{A}_L, \mathcal{A}_R$. (Thanks, Xi!)

Pirsa: 23080023 Page 14/24

Theorem Review (familiar from other talks...):

- Every vN algebra is a direct sum of "vN factors" (vN algebras with trivial centers)
- Every vN factor is of type I, II, or III.
- There is no (faithful, normal, semifinite) trace on a type III factor.
 So our factors are not type III!!!!

Pirsa: 23080023 Page 15/24

Theorem Review (familiar from other talks...):

- Every vN algebra is a direct sum of "vN factors" (vN algebras with trivial centers)
- Every vN factor is of type I, II, or III.
- There is no (faithful, normal, semifinite) trace on a type III factor.
 So our factors are not type III!!!!
- For any such trace on a type II factor, there are non-trivial projections P with arbitrarily small trace. But this is not allowed by our trace inequality:

$$tr(a^*a)\ tr(b^*b) \geq tr(b^*a^*ab)$$
 (*) "The Trace Inequality" For $a=b=P$ w/ $P^2=P$ we find $tr(a^*a)\ tr(b^*b)=[tr(P)]^2\geq tr(b^*a^*ab)=tr(P)_{_{\mathbb{I}}}$
$$tr(P)=0 \implies P=0$$
 Otherwise, $tr(P)\geq 1$

Our algebras are n≪ type ⊮an⊗ so must be type !!!!

Pirsa: 23080023 Page 16/24

The (von Neumann or Rieffel) bicommutant theorem then tells us that \mathcal{A}_L , \mathcal{A}_R are commutants.

Consider the central subalgebras $\mathcal{Z}_{\underline{\ell}} \subset \mathcal{A}_L$, where $\mathcal{Z}_L = \{z: \ az = za \ \forall a \in \mathcal{A}_L\}$, and similarly $\mathcal{Z}_R \subset \mathcal{A}_R$. Note that $\mathcal{Z}_L = \mathcal{Z}_R = \mathcal{Z}$. Diagonalizing \mathcal{Z} yields eigenspaces $\mathcal{H}^z_{B \sqcup B}$ preserved by \mathcal{A}_L , \mathcal{A}_R such that

$$\mathcal{H}_{B\sqcup B}=\int_{igoplus}\,dz\,\,\mathcal{H}_{B\sqcup B}^{z}$$
 .

Thus
$$\mathcal{A}_L = \int_{\oplus} dz \ \mathcal{A}_L^z$$

where \mathcal{A}_L^z annihilates $\mathcal{H}_{B\sqcup B}^{z\prime}$ for $z\neq z'$ and $\mathcal{A}_{B\sqcup B}^z$ has trivial center. It is thus a type I von Neumann factor with commutant \mathcal{A}_R^z on $\mathcal{H}_{B\sqcup B}^z$.

So,
$$\mathcal{H}_{B\sqcup B}^{z}=\mathcal{H}_{B\sqcup B,L}^{z}\otimes\mathcal{H}_{B\sqcup B,R}^{z}$$

Quantization of tr(P) then requires that for each z there is an $n_z \in \mathbb{Z}^+$ such that for

$$\widetilde{\mathcal{H}}_{B\sqcup B,L}^{z}=\mathbb{C}^{n_{z}}\otimes\widetilde{\mathcal{H}}_{B\sqcup B,L}^{z}$$

And $a \in \mathcal{A}_L^z$ we have $tr(a^*a) = \widetilde{Tr}_z(1_{\mathbb{C}^{n_z}} \otimes a^*a)$, where is the usual Hilbert space trace on

 $\widetilde{\mathcal{H}}^{z}_{B\sqcup B,L}$ summing diagonal matrix elements over an $\mathfrak{G}.N$. basis: $\widetilde{\mathit{Tr}}_{z}(A) \coloneqq \sum_{i} < i|a|i>$

Pirsa: 23080023

Thus for a density matrix $\,
ho_z \,$ on $\widetilde{\mathcal{H}}^{\, z}_{B \sqcup B,L} \,$ we have

$$S(\rho_z) := -tr(\rho_z \ln \rho_z) = -\widetilde{Tr}_z(\rho_z \ln \rho_z) =: \widetilde{S}_z(\rho_z)$$

Furthermore, for a *surface* a, $Y^d_{B \sqcup B}$ that defines a state |a>, we can define ρ = (a^*a) ,

$$\rho =$$

so that $tr(\rho^n)$ is computed via "the gravitational replica trick."

Thus by LM, if there is a limit described by semiclassical bulk gravity, then

$$S(\rho) = \frac{A}{4G} + \dots$$
 (RT!)

But from above, if p_z give the probabilities for the state |a> to be in the sector $\mathcal{H}^z_{B\sqcup B}$, we have

$$S(\rho) = \int dz \ p_z \widetilde{S}_z(\widetilde{\rho}_z) \qquad \text{for } \widetilde{\rho}_z = 1_{\mathbb{C}^{n_z}} \otimes \rho_z$$

Pirsa: 23080023 Page 18/24

VII. Summary

Assume finite on smooth boundaries, reality, reflection positivity, continuity, and factorization. Then

- There is a bulk Hilbert space associated with boundary $B \sqcup B$
- There are right and left von Neumann algebras that act on this Hilbert space.
- They are type I! This means that they contain only type I factors.
- As a result, the Hilbert space is a sum of of terms that factorize

$$\mathcal{H}_{B \sqcup B} = \int_{\bigoplus} dz \ \mathcal{H}_{B \sqcup B}^{z}$$

$$\mathcal{H}_{B \sqcup B}^{z} = \mathcal{H}_{B \sqcup B,L}^{z} \otimes \mathcal{H}_{B \sqcup B,R}^{z}$$

 Augmenting this construction with finite-dimensional maximally-entangled "hidden sectors" then gives a standard "state counting" interpretation of the RT entropy.

Pirsa: 23080023 Page 19/24

The (von Neumann or Rieffel) bicommutant theorem then tells us that \mathcal{A}_L , \mathcal{A}_R are commutants.

Consider the central subalgebras $\mathcal{Z}_L \subset \mathcal{A}_L$, where $\mathcal{Z}_L = \{z\colon az = za \ \forall a \in \mathcal{A}_L\}$, and similarly $\mathcal{Z}_R \subset \mathcal{A}_R$. Note that $\mathcal{Z}_L = \mathcal{Z}_R = \mathcal{Z}$. Diagonalizing \mathcal{Z} yields eigenspaces $\mathcal{H}^Z_{B \sqcup B}$ preserved by \mathcal{A}_L , \mathcal{A}_R such that

$$\mathcal{H}_{B\sqcup B}=\int_{\bigoplus}\,dz\,\,\mathcal{H}_{B\sqcup B}^{z}$$
.

Thus
$$\mathcal{A}_L = \int_{\oplus} dz \ \mathcal{A}_L^z$$

where \mathcal{A}_L^z annihilates $\mathcal{H}_{B\sqcup B}^{z\prime}$ for $z\neq z'$ and $\mathcal{A}_{B\sqcup B}^z$ has trivial center. It is thus a type I von Neumann factor with commutant \mathcal{A}_R^z on $\mathcal{H}_{B\sqcup B}^z$.

So,
$$\mathcal{H}_{B\sqcup B}^{z}=\mathcal{H}_{B\sqcup B,L}^{z}\otimes\mathcal{H}_{B\sqcup B,R}^{z}$$

Quantization of tr(P) then requires that for each z there is an $n_z \in \mathbb{Z}^+$ such that for

$$\widetilde{\mathcal{H}}_{B\sqcup B,L}^{z}=\mathbb{C}^{n_{z}}\otimes\widetilde{\mathcal{H}}_{B\sqcup B,L}^{z}$$

And $a \in \mathcal{A}_L^z$ we have $tr(a^*a) = \widetilde{Tr}_z(1_{\mathbb{C}^{n_z}} \otimes a^*a)$, where is the usual Hilbert space trace on

$$\widetilde{\mathcal{H}}^{z}_{B\sqcup B,L}$$
 summing diagonal matrix elements over an $\mathfrak{G}.N$. basis: $\widetilde{\mathit{Tr}}_{z}(A) \coloneqq \sum_{i} < i|a|i>$

Pirsa: 23080023

The left- and right- representations on $\mathcal{H}_{B \sqcup B}$ can now be completed to define von Neumann algebras \mathcal{A}_L , \mathcal{A}_R .

These algebras have useful traces!

For a surface $a, Y_{B \sqcup B}^d$, define $tr(a^*a) := \langle a|a \rangle = sup_{\epsilon} \langle C_{\epsilon} | \hat{a}_L^{\dagger} \hat{a}_L | C_{\epsilon} \rangle / ||C_{\epsilon}||^2$ Traces on vN algebras need only be defined on positive elements, of the form a^*a .

$$< a|a> < b|b> \ge < b^* \left| \hat{a}_L^{\dagger} \hat{a}_L \right| b> = < b^* a^* |ab>$$

$$tr(a^*a) \ tr(b^*b) \ge tr(b^*a^*ab)$$
 (*) "The Trace Inequality"

And now the magic..... The final form $\sup_{\epsilon} < C_{\epsilon} \left| \hat{a}_L^{\dagger} \hat{a}_L \right| C_{\epsilon} > /||C_{\epsilon}||^2$ is well-defined on the vN algebra (and gives a faithful, normal, semi-finite trace).

Also, when $tr(a^*a)$ is finite, there is still a state |a> of norm $tr(a^*a)$. So C-S argument still works, and (*) in fact still holds on $\mathcal{A}_L, \mathcal{A}_R$. (Thanks, Xi!)

Pirsa: 23080023 Page 21/24

Thus for a density matrix $\,
ho_z \,$ on $\widetilde{\mathcal{H}}^{\, z}_{B \sqcup B,L} \,$ we have

$$S(\rho_z) := -tr(\rho_z \ln \rho_z) = -\widetilde{Tr}_z(\rho_z \ln \rho_z) =: \widetilde{S}_z(\rho_z)$$

Furthermore, for a surface a, $Y^d_{B\sqcup B}$ that defines a state |a>, we can define ρ = (a^*a) ,

$$\rho = \underbrace{\begin{array}{c} a^* \\ xx \\ a \end{array}}$$

I

so that $tr(\rho^n)$ is computed via "the gravitational replica trick."

Thus by LM, if there is a limit described by semiclassical bulk gravity, then

$$S(\rho) = \frac{A}{4G} + \dots$$
 (RT!)

But from above, if p_z give the probabilities for the state |a> to be in the sector $\mathcal{H}^z_{B\sqcup B}$, we have

$$S(\rho) = \int dz \ p_z \widetilde{S}_z(\widetilde{\rho}_z)$$
 for $\widetilde{\rho}_z = 1_{\mathbb{C}^{n_z}} \otimes \rho_z$

I. Motivation from Ryu-Takayanagi

Consider a familiar TFD-like setup for discussing Ryu-Takayanagi Entropy

$$S_{RT} = \frac{A}{4G} + \dots$$

If there is a dual CFT, we understand there to be a Hilbert space $\mathcal{H}_B \otimes \mathcal{H}_{\bar{B}}$, and S_{RT} describes the entropy of the associated density matrix on either factor.

How much of this story can we derive from the bulk without invoking AdS/CFT? Two recent developments suggest we might be able to do quite a bit:

- 1) Page curve story where B is a non-gravitating bath.
- 2) Chandrasekaran-Longo-Penington-Witten & P-W type II algebras and their entropy Without invoking AdS/CFT, both give entropies that can be computed from RT (in an appropriate limit for #2).

The (von Neumann or Rieffel) bicommutant theorem then tells us that \mathcal{A}_L , \mathcal{A}_R are commutants.

Consider the central subalgebras $\mathcal{Z}_L \subset \mathcal{A}_L$, where $\mathcal{Z}_L = \{z\colon az = za \ \forall a \in \mathcal{A}_L\}$, and similarly $\mathcal{Z}_R \subset \mathcal{A}_R$. Note that $\mathcal{Z}_L = \mathcal{Z}_R = \mathcal{Z}$. Diagonalizing \mathcal{Z} yields eigenspaces $\mathcal{H}^Z_{B \sqcup B}$ preserved by \mathcal{A}_L , \mathcal{A}_R such that

$$\mathcal{H}_{B\sqcup B}=\int_{\bigoplus}\,dz\,\,\mathcal{H}_{B\sqcup B}^{z}$$
.

Thus
$$\mathcal{A}_L = \int_{\oplus} dz \ \mathcal{A}_L^z$$

where \mathcal{A}_L^Z annihilates $\mathcal{H}_{B\sqcup B}^{Z'}$ for $z\neq z'$ and $\mathcal{A}_{B\sqcup B}^Z$ has trivial center. It is thus a type I von Neumann factor with commutant \mathcal{A}_R^Z on $\mathcal{H}_{B\sqcup B}^Z$.

So,
$$\mathcal{H}_{B\sqcup B}^{z}=\mathcal{H}_{B\sqcup B,L}^{z}\otimes\mathcal{H}_{B\sqcup B,R}^{z}$$

Quantization of tr(P) then requires that for each z there is an $n_z \in \mathbb{Z}^+$ such that for

$$\widetilde{\mathcal{H}}_{B\sqcup B,L}^{z}=\mathbb{C}^{n_{z}}\otimes\widetilde{\mathcal{H}}_{B\sqcup B,L}^{z}$$

And $a \in \mathcal{A}_L^z$ we have $tr(a^*a) = \widetilde{Tr}_z(1_{\mathbb{C}^{n_z}} \otimes a^*a)$, where is the usual Hilbert space trace on

$$\widetilde{\mathcal{H}}^{z}_{B\sqcup B,L}$$
 summing diagonal matrix elements over an $\mathfrak{G}.N$. basis: $\widetilde{\mathit{Tr}}_{z}(A) \coloneqq \sum_{i} < i|a|i>$

Pirsa: 23080023 Page 24/24