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A symmetry algebra in double-scaled SYK

Douglas Stanford

Stanford University

July 34, 2023

Based on a recent paper with Henry Lin and discussions with Zhenbin Yang.
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JT algebra

Consider the operators H;, Hgr, £ in JT gravity plus matter on an interval:

Lorentzian Euclidean

These operators generate an algebra [Harlow/Wu, Lin]
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This is actually a very simple algebra in disguise. If we define

then these form an sl, subalgebra and the entire algebra is simply

Heisenberg X sl,.

The first factor is generated by ¢ and [H; + Hg, £] and the second by
[Lin/Maldacena/Zhao]
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This algebra determines lots of important stuff in JT gravity
[Lin/Maldacena/Zhao, Harlow/Wau], like the chaos properties (maximal
Lyapunov exponent), the traversable wormhole experiment, ...

We will discuss a deformation of this algebra that arises in
double-scaled SYK, and that reduces to the JT algebra in a
low-temperature limit.

The algebra has practical applications simplifying some SYK
computations.

Conceptually, it represents a deformation of something that appeared to
be quite rigid: the near-horizon Poincare symmetry. Also

1. The deformed algebra is compatible with a type of discrete geometry.

2. In a semiclassical limit the discreteness goes away, and the algebra
reduces to sl, with a nonstandard action that determines the
sub-maximal Lyapunov exponent.
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Let's start by explaining qualitatively where the algebra comes from.

Consider a general quantum mechanical system and label two-sided
states in the way David Kolchmeyer did in his talk on Monday:

|H3O1H20,) = H3O1H? O, @ 1|MAX)

Labeling states this way makes it easy to act with H; and Hg:
Hi |H} O H?O,) = |H*O1H?O,)
Hr|H3O1H?*O,) = |H3O1H?* O, H)

To get the algebra we are interested in, we also need an analog of the
third operator £ in JT gravity.
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For the analog of ¢, we choose a multiple of the size operator
[Roberts/DS /Streicher, Streicher/Qil:

sl) =0 s|y1) = [1)  s|Yire) = 2|virye)  s|ivirr) = [ivirn)

The special feature of double-scaled SYK is that H;, Hg and the size
operator generate a fairly simple algebra.

To explain this further, we need to define double-scaled SYK and a more
subtle labeling of the Hilbert space than the one on the last slide.
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Double-scaled SYK

We take the limit p — oo and N to infinity in the SYK model

{Q/)-"awj} = 25!}5
H — ip/2 Z Jil...i.;,?vbh e ?J'Jf'ps <J5_,p> = N
Iefieiiai oA (p)
holding fixed

A=2p°/N, q=exp(-A).

The model has two dimensionless parameters:
A controls the semiclassical-ness. A << 1 == small fluctuations

3./ acts as a sort of coupling, where high temperature is more weakly
coupled and low temperature is more strongly coupled.

Define matter operators by a similar formula

. 1
Os o 15/2 Z Kfl...l'sqrbﬁ . ‘Ilﬁb-"s’ (K"?-'.s) = Ny

1<ip < <is<N (’:)

[Erdos/Schroder (spins), CGHPSSSST, Berkooz/lIsachenkov/Narovlansky/Torrents]
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Correlation functions are given by a sum over all possible “chord
diagrams” that describe the Wick contractions of the J; ; and Kj
couplings:

tr(H}OH30) >

We get a factor of g for each intersection between Hamiltonian chords,
and a factor of g2 for intersections between Hamiltonian chords and
matter chords (A = s/p), so the above evaluates to

q°(q°)>
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Double-scaled SYK

We take the limit p — oo and N to infinity in the SYK model
{i, ¢} = 26y,
H = ip/2 Z Jfl...i.;,?vbﬁ e ﬂ*’fps <J5_,p> =

N
1<ih<--<ip<N (p)

holding fixed
A= 2p2/N, q = exp(—A).
The model has two dimensionless parameters:
A controls the semiclassical-ness. A < 1 == small fluctuations

3./ acts as a sort of coupling, where high temperature is more weakly
coupled and low temperature is more strongly coupled.

Define matter operators by a similar formula

: 1
Os — 15/2 Z Kfl...l'sqrbﬁ : o ‘Ilﬁb-"s’ (K"?-'.s) = TNy

1<ip < <is <N (’:)

[Erdos/Schroder (spins), CGHPSSSST, Berkooz/lIsachenkov/Narovlansky/Torrents]

Pirsa: 23080022 Page 10/23



One can cut open these chord diagrams to get a Hilbert space
[Berkooz/Isachenkov/Narovlansky/Torrents, Lin]

ng ng
Different from previous labeling scheme, because some of the operators
might have contracted:

1,1},

2.0y

0,0),

0,2),2,0),

|H>*OH?) = superposition of

States |n., ng) have definite size: > = il where the “chord number"” is:

nlng, ng) = (n;_ + A+ nR)|nL, nR).
We define ¢ as the rescaled chord number = rescaled size operator:

£ = An discrete!
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So we now have a collection of states where the ¢ operator acts simply.
The H; and Hg operators also act fairly simply on these states, so we
can compute their algebra. It is convenient to write

HL:a;'_JraL

where the two terms correspond to creating or annihilating a chord. Then

[ﬁa aj.] = a;ia [ﬁa ai] = =i

a;al —gala;=1 (nosum)
So far this is the algebra of two “g-deformed Harmonic oscillators.” But
the two oscillators are not quite independent:

lar, ag] = [a],ak] =0
[ac, af] = [ar, a]] = ¢".

This is the most “beautiful” way we found to write the algebra, but one
can also write it out in terms of H;, Hg, ki, kg, £ and it looks similar to
the JT algebra with a couple of extra terms on the RHS. At low
temperatures these extra terms vanish.
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In JT gravity, the most useful part of the algebra is the sl, subalgebra.
Does that have an analog?

One can use exactly the same formulas as in the JT case and define

These operators generate a subalgebra that commutes with £ = An. This
generalizes the sl algebra from the JT gravity case. Proper subalgebra
of the “quantum algebra” U s(sl2).

In the semiclassical limit A — 0, the algebra of B, E, P simplifies to sl;,
but with a strange action on the boundary that can be explained by
introducing the “fake circle.”
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The fake circle

I

¢2— % =v(fz2— %
02 /ﬂ.\
—_— : ;

U Uﬁl FI=u(6+1)

Here 0 < v < 1 is a determined by the temperature:

(R4 TV
— = COS —

3 2

which is the only parameter remaining in the limit A — O.
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The generators act as

(O(62)BO(61)) = 94,(0(62)0(61))
(O(02)EO(01)) = (cos(¢1)0p, — Asin ¢1){O(02)O(61))
(O(62)PO(61)) = i(sin(¢1)y, + A cos ¢1){O(62)O(61))

2 e N\
B - -iP = ¢ b E= ¥
N N N

o m ™
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What do the fake portions of the fake circle mean?

If ¢ starts out in the physical region, can act with a symmetry generator
to leave the physical region:

(%‘”lB

If we don’t introduce the fake circle, we can alternatively describe this
using a Euclidean timefold:

(_3|(:\B
v

What does this state look like in the chord Hilbert space?
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We can start out at finite A with the exact formulas for the B, E, P
generators, and with a state that is a superposition

> wp(n)lne, n— ny)

Start with the wave function where the particle is all the way to the right:

L]
[ ] ]
L]

= Wy =

Evolving back into the physical region we get a smooth wave function:

n, 0)

Y

0.05
‘. ; - :
N 200 @0 B0 B0 ook

-0.06

o LT
“an
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Evolving into the fake region, we get a crazy, numerically large,
oscillating wave function

5x1010

e - 20 40 60 adfffff 0 ™

~..-
I

The A\ — 0 limit is a continuum limit and one might have thought we
could ignore such states. But we need to keep them in order to have
representations of the symmetry algebra. The fake portion of the
boundary gives a smooth way to parametrize them.
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Application: chaos from order

By expanding the exact formulas for B, E to first order around the
thermofield double state, one finds the following
2TV
HR S HL ~ —B
g
{— <£> ~cakE + Cz(HL + Hip — 2<H>)

Let’s focus on the first equation for the moment. The sl, algebra implies
that under the adjoint action, the B operator has eigenvalues +i, with
eigenvectors given by

i[B,E + P| = F+(E + P).

This means that under time evolution by Hgp — H, the E + P operator
grows exponentially

2wy

eit(HR_HL)(E e P)e—it(HR—HL) — e"'ﬁ"t(E + P).

2mv

This reproduces that & is the Lyapunov exponent [Maldacena/DS]. It
also identifies E + P as the “Pomeron” or “scramblon” operator.
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Application: traversable wormhole

One can use these formulas to analyze the traversable wormhole
experiment of [Gao/Jafferis/Wall]. We want to compute

4

A
e ! Tf

oV, .- Vye = <VL|eit(HR‘HL)e-igee-if(HR-HL)|VR>
|

The key thing is to evaluate the time evolution of the ¢ operator:

2wy

eit(Hr—HL) po—it(Hr—Hi) _ %(E + Ple 5 ' 4+ non-growing

Now substitute this in...
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<VL|eir(HR—HL)e—igﬂe—it(HR—HL) | VR> = (VL|e—ia(E+P) | VR)

[ cos%‘-’- rAV

1+ide'z"

This reproduces a formula from [Gao/Jafferis| in the large p SYK model.
In going to the second line we used the formula for E, P as sl generators
acting on boundary operator positions.

It turns out that the maximum of the magnitude of this, over t, is exactly
one. So for this one special value of t

. VR = oV,

So the traversable wormhole works as well as possible, at any
temperature. Becuase the scramblon is a symmetry generator!
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Chords vs. geometry
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Summary

1. JT gravity has a symmetry algebra Heisenberg xsl, that includes
the near-horizon Poincare symmetries

2. In double-scaled SYK there is a deformation of that algebra that
acts on a discrete Hilbert space

3. In the semiclassical limit it contains an sl, subalgebra that acts on
an extended “fake” thermal circle

4. The algebra can be used to simplify various computations
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