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Abstract: We propose a conceptually new class of dynamical experiments whose goal is to falsify the hypothesis that an interaction between
guantum systems is mediated by a purely local classical field. The systems we study implement a dynamics that cannot be simulated by means of
local operations and classical communication (LOCC), even when no entanglement is ever generated at any point in the process. Using tools from
guantum information theory, we estimate the maximal fidelity of simulation that a local classical interaction could attain while employing only
LOCC. Under our assumptions, if an experiment detects a fidelity larger than that calculated threshold, then a local classical description of the
interaction is no longer possible. As a prominent application of this scheme, we study a general system of quantum harmonic oscillatorsinitialised in
normally distributed coherent states and interacting via Newtonian gravity, and discuss a possible physical implementation with torsion pendula.
One of our main technical contributions is the calculation of the above bound on the maximal LOCC simulation fidelity for this family of systems.
As opposed to existing tests based on the detection of gravitationally mediated entanglement, our proposal works with coherent states alone, and
thus it does not require the generation of largely delocalised states of motion nor the detection of entanglement.
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Motivation

What happens to the gravitational field of a delocalised mass?!
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lFeynman, Chapel Hill conference, 1957.
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The gravitational field follows matter — enters a superposition
— creates entanglement with test particle
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Motivation

What happens to the gravitational field of a delocalised mass?!
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The gravitational field follows matter — enters a superposition
— creates entanglement with test particle

Gravity is classical — no superposition — something else happens

(e.g. gravity tries to measure positions, decohering the state)

Can we discriminate between these two options, experimentally?

lFeynman, Chapel Hill conference, 1957.
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General system of interest:
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Two main hypotheses:

2Carney, Stamp, and Taylor, Class. Quantum Grav. 36, 034001, 2019.
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General system of interest:
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Two main hypotheses:

—iHct/h

Gravity acts as the unitary Ug = e . where?

Gm:m:
Hg = Newtonian Hamiltonian = —Z, %
i<i ||fi = 7l

Gravity is an underlying classical field:

2Carney, Stamp, and Taylor, Class. Quantum Grav. 36, 034001, 2019.
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General system of interest:

v f

I%5-7

.
%

Two main hypotheses:

—iHct/h

Gravity acts as the unitary Ug = e . where?

Gm:m:
Hg = Newtonian Hamiltonian = —Z, %
i<i ||\fi = 7l

Gravity is an underlying classical field:

Assuming linearity,
ﬁ the interaction must be an LOCC!

2Carney, Stamp, and Taylor, Class. Quantum Grav. 36, 034001, 2019.
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What is an LOEE?

Definition

Any state-to-state transformation that Alice and Bob can implement with
many rounds of local quantum operations and classical communication of
the measurement outcomes.
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What is an LOEE?

Definition

Any state-to-state transformation that Alice and Bob can implement with
many rounds of local quantum operations and classical communication of
the measurement outcomes.
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The problem

Main question

Given an isometry U : A;... A, - Al ... A on a multi-partite quantum
system 1:2:...:n, how well can it be simulated by means of LOCC?
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The problem

Main question

Given an isometry U : A;... A, - Al ... A on a multi-partite quantum
system 1:2:...:n, how well can it be simulated by means of LOCC?

Several figures of merit are possible.
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The problem

Main question

Given an isometry U : A;... A, - Al ... A on a multi-partite quantum
system 1:2:...:n, how well can it be simulated by means of LOCC?

Several figures of merit are possible.
In practice, the initial states of the system are limited by technology.

We can only prepare states from the ensemble & = {p,, |[¥4) }a
— a good figure of merit is

Fee(8, U) - sup )Zpa Tr [A($a)¥al

AELOCC(A—A")

ﬁ’éx e U|¢a)(wa| Ui
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Operational interpretation
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Operational interpretation
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PQIU) =3 paTrpUyall =1,
P(QILOCC) =) pa Trl,A($a) < Fu(8, U).

Frequency(Q) > Fy(8,U) = @@ # LOCC
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Example

e Known ensemble of states {pq, [¥a)}a-
e Can A and B swap unknown states from the ensemble via LOCC?

I
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Example

e Known ensemble of states {pq, [¥a)}a-
e Can A and B swap unknown states from the ensemble via LOCC?

® ©
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A general 'LOCC inequality’

Theorem 1 (LOCC inequality)
For all ensembles & = {p.,¥u}o and isometri?s U:A— A, it holds that

F. < min f;(Raa
cﬂ(%s U)_ JrEI[';] J( AA):

Raw = Y Pa(¥5)a® (¥4)a

fJ(RAA-‘) : inf{TrwA 2 R;h; = w,q@]lA', wa = 0} .

where ¢, = U1, U' and ', = partial transpose on A, and A

Ludovico Lami arXiv:2302.03075 8 /16
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A general 'LOCC inequality’

Theorem 1 (LOCC inequality)
For all ensembles & = {p.,®¥u}o and isometri?s U:A— A, it holds that

F. < min f;(Raa
cﬂ(%s U)_ JrEI[';] J( AA):

Raw = Y Pa(¥5)a® (¥)a

£ (Raa) o= inf {Trwa: Ry Swa®lw, wa>0}.
where !, = U1, U' and ', = partial transpose on A, and A
e Example: n=2, J = {2}, then
(Xa, ® Ya, ® War ® Zy)'” =
@ Any choice of J gives you a SDP-computable upper bound fJ(RAAf).

Ludovico Lami arXiv:2302.03075 8 /16
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@ This can be thought of as an analogue to Bell inequality but for
dynamics:

A€LOCC = ZajpaTr[A(«/za)«/fa] < Fa(8,U) < min £5(Raa')

I
In other words:

Z Pa Tr [N®Wa)¥] > Jncli[n] fi(Raa) = Aisnot an LOCC.

@ In the setting of Bell inequalities,

p(ab|xy) admits LHV model — Z SabxyP(ab|xy) < Sq,
a,b,x,y

thus

Z SabyP(ablxy) > Sa =  p(ab|xy) is not LHV.

a)b)xﬂy
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Application to a specific system

System of interest:
mechanical oscillators. %6
Gm,-m- L fx
Hom s D i o o™
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Application to a specific system

System of interest: %
mechanical oscillators. %6
: o™ %’6

W= Gm,-mj
o D L H
e TR
P ]

Each oscillator is 1-dim. Hilbert space L2(R)®" ~ L?(R").

e Canonical operators r := (x, p1,...,Xn, Pn)T. Commutation

relations @
) O N
Tl -
e =iQY Q-—( 1 0) )

e Coherent states are ‘easy’ to prepare. Single mode:

Co>a=ar+ia) — |a) :=exp [I\/ﬁ (ayx — aRp)] |0) .
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Gaussian coherent state ensemble. \ > 0, fixed n: i.i.d. ensemble

. ®n A - ou2
8 = {pr(a) e, aXal}ory . pa(e) = Se Mo
I
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Gaussian coherent state ensemble. \ > 0, fixed n: i.i.d. ensemble

- ®n A - ou2
8 = {pr(a) o, a¥al}or, . pa(e) = Se Mol
I

Gaussian unitary U.:
@ Definition #1:
Ul rUg =Sr+56;

S: 2n x 2n real ‘symplectic’ matrix; § € R?".

o Definition #2: Uy = [],—, e ™, where H, is of degree at most 2:

H, = Z(ajxj + bjpk) + Z (Aikxixk + Bikpjpx + CikX;jpk) -
/] ik

e Fact: these two definitions are equivalent.

Ludovico Lami arXiv:2302.03075 115/816
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: : 4 L
Distance between oscillation %b §
oscillators amplitude

&h‘ﬁ@x 5‘%
@ o)
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@
e

&h‘ﬁ@x 5‘%
@ o)

5 . . *2
Distance between oscillation %,
oscillators amplitude

I

Gm,- mj

= Taylor expand Hg = — Z;q =7l U to 2th order w.r.t. displacement
(i i

of masses from equilibrium position.
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@
e

&h‘ﬁ@x %
@ o)

5 . . *2
Distance between oscillation %,
oscillators amplitude

I

Gm,- mj

= Taylor expand Hg = — Z;q =7l U to 2th order w.r.t. displacement
(i i

of masses from equilibrium position.

— e~ Hct/h ~ Gaussian unitary Us.

Estimate the upper bound on Fy(&, U) in Theorem 1 for
e & = &), Gaussian coherent state ensemble;
e U = U, Gaussian unitary.
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@
T e
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I

5 . 5 *2
Distance between oscillation D,
oscillators amplitude

Gm,- mj

= Taylor expand Hg = — ) i<j Tr—7] UPto 2th order w.r.t. displacement
sl
of masses from equilibrium position.

— e~ Hct/h ~ Gaussian unitary Us.

Estimate the upper bound on Fy(&, U) in Theorem 1 for

e & = &), Gaussian coherent state ensemble;
e U = U, Gaussian unitary.

— Experimentally feasible scenario.

Ludovico Lami arXiv:2302.03075 125016
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Main result

Gaussian i.i.d. ensemble &y, A > 0. Gaussian unitary U, s.t.
UL rUs = Sr+ 6. Then !

27(1 + A)"

Feo (8, Us) < f(A,S) := min

JCIn TT22y v/2 + A+ [z(X, S, D)

where z(), S, J) is the £*" eigenvalue of the Hermitian matrix

(1+ X)STiQyS — iQy,

2 =@ (5 o)e®( o

jed Jj'ede

Ludovico Lami arXiv:2302.03075 155016
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Main result

Gaussian i.i.d. ensemble &y, A > 0. Gaussian unitary U, s.t.
UL rUs = Sr+ 6. Then !

27(1 + A)"

Fee (8, Us) < f(A,S) := min

UeAII A 2= A NS e

where z(), S, J) is the £" eigenvalue of the Hermitian matrix

(1F X) ST S =19,

2 =@ (5 o)e®( o

Jjed Jj'ede
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Main result

Gaussian i.i.d. ensemble &y, A > 0. Gaussian unitary U, s.t.
UL rUs = Sr+ 6. Then !

Foo (83, Us) < F(\, S) == min 2"(1+ A)

el P R R

where z,(), S, J) is the £" eigenvalue of the Hermitian matrix

(1+X)STiQ,S — iQy,

2 =@ (5 o)e®( o

jed Jj'ede

@ S orthogonal symplectic
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Main result

Gaussian i.i.d. ensemble &y, A > 0. Gaussian unitary U s.t.
UL rUs = Sr+ 6. Then !

Foo (83, Us) < F(, S) == min 2"(1+ A)

U O S

where z(), S, J) is the £" eigenvalue of the Hermitian matrix

(1+ X)STiQyS — iQy,

2 =@ (5 o)e®( o)

Jjed eSS

@ S orthogonal symplectic = sends coherent states to coherent states
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Main result

Gaussian i.i.d. ensemble &y, A > 0. Gaussian unitary U, s.t.
UL rUs = Sr+ 6. Then !

Foo (83, Us) < F(\, S) == min 2"(1+ A)

el P R R

where z,(), S, J) is the £" eigenvalue of the Hermitian matrix
(L) STiq),s =,
0 1 0 -1
QJ:@(J o)@@ (1 o)'
JEJ TP

@ S orthogonal symplectic = sends coherent states to coherent states
= Ug never entangles states in &).

@ Nevertheless, Fu (&, Us) < 1! Processes mapping product states to
product states can be very far from LOCC (e.g. swap).

Ludovico Lami arXiv:2302.03075 13 / 16
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Recap & example

Simplest example:
two oscillators on a line.

Initialise oscillators in |a) ® |3), with a, 8 € C drawn i.i.d. from
Gaussian ensemble py(«).

Let the system evolve for time t. Compute symplectic S(t)
associated with Ug(t) ~ e~ et/

Ludovico Lami arXiv:2302.03075 14 / 16

Pirsa: 23080016 Page 35/49



Pirsa: 23080016

Recap & example

Simplest example:
two oscillators on a line.

Initialise oscillators in |a) ® |3), with a, 8 € C drawn i.i.d. from
Gaussian ensemble py(«).

Let the system evolve for time t. Compute symplectic S(t)
associated with Ug(t) ~ e~ et/

Compute |V, ) = Ug(t)(|o) ® |B)). Measure with POVM
{W, 5 1=V, 5}
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Recap & example

Simplest example:
two oscillators on a line.

Initialise oscillators in |a) ® |3), with a, 8 € C drawn i.i.d. from
Gaussian ensemble p)(«).

Let the system evolve for time t. Compute symplectic 5(t)
associated with Ug(t) ~ e~ et/

Corfnpute |1Uf1,’5) = Ug(t)(|e) ® |B)). Measure with POVM
Vo 1—Vopt

If outcome ‘W[, ;" is obtained with frequency > f(A, 5(t)), then the
process was not LOCC.

Ludovico Lami arXiv:2302.03075 14 / 16
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What have we gained?

What does one need to build an experiment?

Ludovico Lami arXiv:2302.03075 15 / 16

Pirsa: 23080016 Page 38/49



What have we gained?

What does one need to build an experiment?

Our LOCC-inequality proposal: Entanglenment-based proposals:
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@ Ability to prepare coherent
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What have we gained?

What does one need to build an experiment?

Our LOCC-inequality proposal: Entanglenment-based proposals:

@ Ability to prepare coherent
states with great precision
=> cool down macroscopic
oscillators close to ground state.

@ Very precise single-phonon
detectors, precise clocks, etc.

@ Excellent control over noise — e.g. wind blowing at ~ 500 m (!)
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What have we gained?

What does one need to build an experiment?

Our LOCC-inequality proposal: Entanglenment-based proposals:

@ Ability to prepare coherent @ Ability to prepare large
states with great precision delocalised states of
=> cool down macroscopic macroscopic objects.
oscillators close to ground state.

@ Very precise single-phonon
detectors, precise clocks, etc.

@ Excellent control over noise — e.g. wind blowing at ~ 500 m (!)

3Fein et al., Nat. Phys. 15:1242, 2019.
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What does one need to build an experiment?

Our LOCC-inequality proposal: Entanglenment-based proposals:

@ Ability to prepare coherent @ Ability to prepare large
states with great precision delocalised states of
=> cool down macroscopic macroscopic objects.

oscillators close to ground state. & Effictive ihtatfarometirs to

@ Very precise single-phonon manipulate & measure such
detectors, precise clocks, etc. superpositions.

@ Excellent control over noise — e.g. wind blowing at ~ 500 m (!)

3Fein et al., Nat. Phys. 15:1242, 2019.
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What have we gained?

What does one need to build an experiment?

Our LOCC-inequality proposal: Entanglement-based proposals:

@ Ability to prepare coherent @ Ability to prepare large
states with great precision delocalised states of
=> cool down macroscopic macroscopic objects.

oscillators close to ground state. & Effictive intarferomaters to

@ Very precise single-phonon manipulate & measure such
detectors, precise clocks, etc. superpositions.

@ Excellent control over noise — e.g. wind blowing at ~ 500 m (!)

Largest delocalised mass:® heavy molecule m ~ 4 x 10~ kg.

4

3Fein et al., Nat. Phys. 15:1242, 2019.
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What have we gained?

What does one need to build an experiment?

Our LOCC-inequality proposal: Entanglenent-based proposals:

@ Ability to prepare coherent @ Ability to prepare large
states with great precision delocalised states of
=> cool down macroscopic macroscopic objects.

oscillators close to ground state. & Effictive intarfaromatars to

@ Very precise single-phonon manipulate & measure such
detectors, precise clocks, etc. superpositions.
@ Excellent control over noise — e.g. wind blowing at ~ 500 m (!)

Largest delocalised mass:® heavy molecule m ~ 4 x 10~ kg.

Heaviest oscillator cooled to a handful (~ 11) of phonons?*

3Fein et al., Nat. Phys. 15:1242, 2019.
4Whittle et al., Science 372:1333, 2021.
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What have we gained?

What does one need to build an experiment?

Our LOCC-inequality proposal: Entanglement-based proposals:

@ Ability to prepare coherent @ Ability to prepare large
states with great precision delocalised states of
=> cool down macroscopic macroscopic objects.

oscillators close to ground state. & Effictive intarferomaters to

@ Very precise single-phonon manipulate & measure such
detectors, precise clocks, etc. superpositions.
@ Excellent control over noise — e.g. wind blowing at ~ 500 m (!)

Largest delocalised mass:® heavy molecule m ~ 4 x 10~ kg.

Heaviest oscillator cooled to a handful (~ 11) of phonons?*
LIGO's suspended mirror, m ~ 10 kg.

3Fein et al., Nat. Phys. 15:1242, 2019.
4Whittle et al., Science 372:1333, 2021.
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Conclusions & outlook

Problem: decide whether the gravitational interaction is explained by
a classical field. I
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Conclusions & outlook

Problem: decide whether the gravitational interaction is explained by
a classical field. I

— How well can an LOCC simulate a unitary dynamics?

General bound on maximal fidelity of simulation
— 'LOCC inequalities’ ~ Bell inequalities

Application to systems of oscillators

— Fu(&), Ug) for coherent state ensemble and Gaussian unitary.
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Conclusions & outlook

Problem: decide whether the gravitational interaction is explained by
a classical field. I

— How well can an LOCC simulate a unitary dynamics?

General bound on maximal fidelity of simulation
— 'LOCC inequalities’ ~ Bell inequalities

Application to systems of oscillators

— Fe(&), Ug) for coherent state ensemble and Gaussian unitary.

Thank youl
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