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Abstract: We analyze the effect of decoherence, modelled by local quantum channels, on quantum critical states and we find universal properties of
the resulting mixed state's entanglement, both between system and environment and within the system. Renyi entropies exhibit volume law scaling
with a subleading constant governed by a "g-function” in conformal field theory (CFT), allowing us to define a notion of renormalization group
(RG) flow (or "phase transitions") between quantum channels. We also find that the entropy of a subsystem in the decohered state has a subleading
logarithmic scaling with subsystem size, and we relate it to correlation functions of boundary condition changing operators in the CFT. Finally, we
find that the subsystem entanglement negativity, a measure of quantum correlations within mixed states, can exhibit log scaling or area law based on
the RG flow. When the channel corresponds to a marginal perturbation, the coefficient of the log scaling can change continuously with decoherence
strength. We illustrate all these possibilities for the critical ground state of the transverse-field Ising model, in which we identify four RG fixed
points of dephasing channels and verify the RG flow numerically. Our results are relevant to quantum critical states realized on noisy quantum
simulators, in which our predicted entanglement scaling can be probed via shadow tomography methods.
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Motivation I: Quantum simulation

Quantum simulators: promising tools to study quantum many-body physics

Pros:
Going beyond classical capabilities
Controlling individual qubits
Dynamics with measurement, driving, or decoherence

Cons:
Noisy. Large-scale quantum error correction is not yet available
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Motivation II: Measurement-induced phases

pa = tr(M{Mqp)
Ma, = M, P]U(,r /?')a

POVM: § M| > MM, =1 o {p. pa}

Random unitary gate + local projective measurement:

Skinner, Ruhman, Nahum (2019)

Li, Chen, Fisher (2019)
Volume law to area law phase transition by tuning measurement rate Bao, Choi, Altman (2020)

Jian, You, Vasseur, Ludwig (2020)
Emergent conformal invariance at the critical point Li, Chen, Ludwig, Fisher (2021)

Ground state of CFT + (weak) local measurement:

Logarithmic or area-law entanglement depending on measurement basis ~ Garratt, Weinstein, Altman (2022)
Lin, Ye, YZ, Sang, Hsieh (2022)

A . Weinstein, Sajith, Altman, Garratt (2023)
Can enhance or destroy correlations

Importantly: these phases exist only when we consider nonlinear observables of density matrix
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Motivation Ill: Mixed-state phases of matter

Pure-state phases

Traditional view: phases are characterized by symmetry breaking order (Landau paradigm)

Modern view: phase are characterized by long-range entanglement (e.g., topological phase)

Mixed-state phases

Order-disorder transition at finite temperature (generalization of the Landau paradigm)

Another type of phase transition: transition in the information-theoretic properties

Dennis, Kitaev, Landahl, Preskill (2002)
Bao, Fan, Altman, Vishwanath (2023)

{ Toric code under local decoherence

This work: CFT ground state under decoherence
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Setup

Given a spin-chain realization of the CFT
p = N(|¥)(¥l)
Dephasing noise: the environment measures the system at probability p

P

; p
Dm(ﬁ) - (1 i 3) el 504 P O

Of '= UgpO0g + Vyoy + v,0; Independent noise model

What are the entanglement properties of the dephased state? N = x;)fa:l_/\[J
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Main result

* Entanglement quantities can change abruptly as we tune decoherence.

* Key: these entanglement quantities are nonlinear in the density matrix

Entropy: S(p4) = —tr(pslogps) Logarithmic negativity: N(4,A) = logtr [p"*|

* New entanglement phases of mixed states connected by RG flow

Example: critical Ising model with dephasing noise

(Relevant) Weak X dephasing destroys “almost all” long-range entanglement
(Irrelevant) Weak Y dephasing preserves “almost all” long-range entanglement
Weak Z dephasing long-range entanglement
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Renyi entanglement quantities

Renyi entropy: S™(p,) = B logtr pi

1-n

n—1:S(pg) = —tr(palogp,)

Measures the correlation between 4 and AE

Renyi Mutual information: I™ (4, B) = S™(p,) + S™ (pg) — S™ (pap)

n—1:1(A,B) = 5(p4) +S(pg) — S(Pap)

p = papc,A = BC

Measures the correlation between A and B

Renyi negativity: N (4, 4) = #log tr(p )" (n € 2Z) or ﬁlog tr (p 4)" (n € 2Z + 1)

ne€2zZ.n—1: N(A,E) = logtr |pT’”‘|

Measures the quantum correlation between A and A
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Entanglement in the ground state

For pure states, bipartite entanglement is completely characterized by Schmidt spectrum

sM(4) = g (1 + %) log(sin ™~

f”‘) + 0(1), where c is central charge

[(n)(A’j) - 25(”)(A)

N®(4,4)=5S™A),ne2Z+1

1M (A, B) ~ n%A(n « 1), where A is the scaling dimension of the lowest operator

X12X- . WX
12 341Xij = sin LU

Crossratio:n = T
13424
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Mapping to boundary criticality

.'31) / # g n A1 4 e | / Xn
S,El (f)) — ﬁ lOg ‘\PA, ZE\ ) - TI( % TH.A) et Tl(/\f(|l:‘> <L'|)}X Tr:..ﬂ’.)

= Tr((|%)(¥])*" Bn,a)

Baa)) Boundary condition

114))

C! [{1 rl1 R32n

i : 1
S(n) A L0 ) R
(= n -1

log _qj\?;)

Boundary entropy
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Numerical result: boundary entropy

Dephasing in the ZX plane

¥4

< § . [:) Z_J
DI""'T('O) - (1 g '._3) £ ;éO”rr p 0.

Og '= VgOg + VyTy + V.0,

Z (logg = 0) D, (logg =0)

logg =10 l

log g = D, (logg = —log2)

B

Monotonicity under RG flow
Affleck, Ludwig (1989)
Friedan, Konechny (2004)

9(6,L)

0o

D.. (logg =

5

aLo?
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Renyi entanglement quantities

Mutual information measures both classical and quantum correlations

A (1) / /
I™(4,A4) = APy log (£ sin (%)) +0(1)

n—1 e

](“](‘4_ D) = consl. ? (n<1)

Mutual negativity only measures quantum correlations

. 2B 5 L ,
NM (A A) = =Bl jog ( = sin i O(1)
n—1 s L

The scaling dimensions of boundary condition changing operators
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Numerical result: Renyi mutual information

e L : .
EP(A, A= ~=laliop (— sin (f)) +0(1) I™ (A, B) = const. x : (n<1)

n—1 T

Same exponent for all fixed points Different exponent among fixed points

100 el

log(sin(wL4/L))

Pirsa: 23080012 Page 13/17



Numerical result: Renyi negativity

Nl L L, .
N™ (A, A) = = og (L sin NLA) +0(1)
i m L

Weak X dephasing: Area law (relevant)

Weak Y dephasing: Logarithmic scaling with the same
coefficient as the ground state (irrelevant)

Weak Z dephasing: Logarithmic scaling with
L DR o i coefficient

= =

log(sin(wLa/L))
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Experimental realization

Implementation on an ion-trap quantum simulator

{Ull'—lml bl
U—177| b2
N Us L7\ bs
Unitary -
state U4| 177 by Shadow tomography
preparation N I,/?\| be (Classical computing)
(QAOA or MERA) 77~ be

A [N by

— N[ bs
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Implication on code properties of CFT

I_I‘(j)u) - E(t|(;/)(l‘>
Code subspace Hesas=spanild,o=1.2:- ,d}

2m c
E‘(r - Ty (A o _)
i T é {2

Vyor =D _ldadolyr  por = No(l¥)(¥)

Coherent information I.=8g — Sqgr Approximately decodable <> I. = logd — ¢

Relevant dephasing: not correctable error lim I. =0
L—oo

YZ, Sang (in preparation)
Irrelevant dephasing: correctable error Ilim I.=logd
[L—00

Caveat: have to be careful to replica limit
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Summary

Decoherence induces new mixed-state phases for a critical state

These phases are distinguished by different long-range quantum entanglement

These phases are connected by RG flow (phase transitions)

These phases can be realized on a quantum computer

Corollary: CFT is a biased quantum error correction code
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