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Abstract: Quantum simulation of lattice gauge theory is expected to become a major application of near-term quantum devices. In this presentation,
| will talk about a quantum simulation scheme for lattice gauge theories motivated by Measurement-Based Quantum Computation [1], which we call
Measurement-Based Quantum Simulation (MBQS). In MBQS, we consider preparing a resource state whose entanglement structure reflects the
spacetime structure of the ssimulated gauge theory. We then consider sequentially measuring qubits in the resource state in a certain adaptive
manner, which drives the time evolution in the Hamiltonian lattice gauge theory. It turns out that the resource states we use for MBQS of Wegner's
models possess topological order protected by higher-form symmetries. These higher-form symmetries are also practically useful for error
correction to suppress contributions that violate gauge symmetries. We also discuss the relation between the resource state and the partition function
of Wegner's model. This presentation is based on my work with Takuya Okuda[2].

[1] R. Raussendorf and H. J. Briegel, A One-Way Quantum Computer, Phys. Rev. Lett. 86, 5188 (2001)
[2] H. Sukeno and T. Okuda, M easurement-based quantum simulation of Abelian lattice gauge theories, arXiv:2210.10908
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Introduction

e Quantum simulation of lattice gauge theories
® Most of works in the literature: so-called gate-based quantum computers.

® Measurement-Based Quantum Computation (MBQC) is also a model capable
of quantum computation.

e In this vein, we have formulated an MBQC scheme for simulating a class of spin
models that includes gauge theories.

e [t turned out our construction exhibits some features which may be of interest to
the It from Qubit community.

® In our construction, the spacetime structure of simulated theory is reflected in
the entanglement structure of the state to be measured, i.e., the resource state.
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Plan

e Essence of MBQC (MBQS) in (0+1)dimensions
® Wegner’s generalized Ising models

e MBQS for Wegner’s models

e Higher-form symmetries, an SPT order, and a holographic interplay.

® Some remarks
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Essence of MBQC (MBQS)

in (0+1)dimensions




MBQC: (0+1)dimensions
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MBQC: (0+1)dimensions

Feedforward
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MBQC: (0+1)dimensions

O

Uy UsUy 1)

Simulated state
(Cleaned up)

Post-measurement produ;:t state
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MBQC: (0+1)dimensions

R 1 o . . P 4
andom {0,1} e Consider a one-qubit “initial state” |y)

l 5 e Prepare a “resource state” CZ_ ,CZ, .|y),| + ),| + ).
e Measure: the a qubit with the basis Z°| + ) (s =0,1)
*—9—=o e Measure: the with the basis Z'¢"“?| +) (1=0,1)
|uf>ai 1 I a2 )c
[(+l.ze | % [€ZusCielwral 401 1 4) | X2 70|y,

Teleportation to the ¢ qubit & rotation.
The rotation angle depends on the outcome of the first measurement s.

® |+)
Notation: — CZ,,:=|0)0| ®1I, +|1X1| ®Z,=CZ,,

Single-qubit measurement
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MBQC: (0+1)dimensions

X'Z5 - DX |y 5 X175 - emiaX | y)

by choosing & = (—1)*a. (a: desired angle)

O
One can choose angles {&, } adaptively to absorb
effects from previous measurements.
@ & 6—6—¢ After measuring all ciubits except the last one, we will be left with

#r#  —iq X —ia, X ,—ia; X
Sl AR s e |l/f>rightbdry

can be removed
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MBQC

What we have just shown is a simple example of MBQC.

MBQC (measurement-based quantum computation)

(Universal) quantum computation can be achieved by

(1) preparing a resource state
(2) measuring the resource state in a certain adaptive pattern.

(3) post-processing (unwanted) byproduct operators
[Raussendorf-Briegel (2001)]
Review article: e.g. [T.-C. Wei (2023)]

However, our goal below is not the universal quantum computation, but a
quantum simulation of Wegner’s Ising models.
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MBQC: multi-body interaction term

For a multi-qubit quantum computation, we can use another building
block of MBQC.

e Consider a general “initial state” |y),,.

e Prepare a “resource state” CZ, ,CZ, .|y);,
e Measure the with {€%]0), e%X| 1)}, ie., X%e“X|0) (s=0,1)

: CZa,bCZa,c | ' > bc =C _ié:ZhZU(ZbZ(;') ; | ' >b(ﬁ'

— Multi-qubit rotation.
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Spin model to be simulated
—Wegner’s generalized Ising models—
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Cell simplex o;

0 %) 03

/ _ L

o, : cell simplices in d dimensional hypercube lattice

l

(d — 1)-dim
{} .O'O
J 5 .
[j+ 1] . 6y = 0y X {j}
U+1] dedim

Xa W
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o; : cell simplices in d — 1 dimensional hypercube lattice

6;=0;X{j} orc,,y =0;X[j,j+ 1]

Point

Inter\/a] Xd C()Ol'diﬂ Cltt“

.O'O =] 0'1

I5‘1=0'0X[j,]+1] .5-2=01x[j’j+1]
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Similarly, we have cell simplices in the dual lattice with 6; ~ o7 .

We have 0 = 0 (and (0*%)? = 0) and a chain complex.

(= (% )

dual . dual o
o S la)=(g =)
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Wegner’s generalized Ising model

MOdel M(d,n):
Classical spin variables S; € {+1, — 1} living on (n — 1)-cells in the d
-dimensional hybercubic lattice. [wegner (1971)]

Euclidean action (classical Hamiltonian) / :

1=—J&Zn( [T s..)-

Op-1 C aan

Via the transfer matrix formalism, we obtain a quantum Hamiltonian in (d — 1)
dimensions with the continuous time. [Kogut (1979)]

Hypy=— Z X(o,_ ;) — A Z Z(05,) .

o,

n—1 Oy,
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Wegner’s generalized Ising model
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Classical Ising model Transverse field Ising model
I=-17) 5(5) Hypy=- 2 X(0p) — 4 Z Z(doy)
edge o ® 0y oy

site variable

Gauge theory (Wilson's Q‘ W .
plaquette action for G = Z,) uantum pure gauge theory
I=-J Z S(aou'g) H(d,2) —J— Z X(O-l) - l E Z(a()'z)
plaquette = =

link variable —_—
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Wegner’s generalized Ising model

We wish to simulate a Trotterized (real) time evolution:

lw(D)) = U@®) |w(0))

: . J
T(t =jAt) = (HezAtX(an_l)HetAMZ(aon)) _
Gn

Cp—1

with
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MBQS of lattice gauge theories




| ¥(0))bary

| We/bulk

| W(T»bdryll',l -

| w(1))pary : simulated state of M, ) with the Trotterized time evolution 7(z),
W (D)bary = T(D) |9(0)) .

[ ] 1 rl P —

| . RIS e R i L S e sl el st al o L o L f ~CTC )\
Y7 YOoaCNI11vyYro {10 (Yoo W li17o cl1iIctorr cTatTo o g | N |

| W/ bulk - Y€SOUrCe state to be n 1easured generalized cluster state (gL0).
r U7 DUIK O

s |
F X { A | | - - N 1 1
11,CU CLUDLCL dld
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MBQS

Entanglement in our resource state, , 18

tailored to reflect the space-time structure of the model M, :
L A A
|gCS(d,n)> t %CZ| + > nl + > —

Ucz = H ( H CZ&n_p&n)'

c,€EA, 6,_1C06,

(da n‘) S (391) ( © (d’ n) = (392)
[Raussendorf Bravyi
Y o Harrington (2007)]
©

0-cell 6, 1-cell o,
1-cell 5, ¢ 2-cell 6,

/ ©

9 ©
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MBQS: Simulating M(3,1) on gCS(3,1)

o
{0} ‘/‘: <—Load a 2d initial state | 1//(0))bdry at x; = 0.
[0,1]] ¢ Couple it to the rest of the resource state.
o
]
v

x;-direction
=“time” in the simulated world
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MBQS: SimU.lating M(3,1) on gCS(3,1)

UU

H 6—153)((60)
teleported to [j,j + 1]

0y

teleported to {j + 1}
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MBQS: SimU.lating M(3,2) on gCS(3,2)

<—Load a 2d initial state |y/(0)),, of the gauge

theory
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MBQS: simulating M3 5, on gCS; ,,

6y, = 0y X {J} 6) =0y X {J} o1=0yXj,j+ 11| |6p=0,X[j,j+1]

—E 70 —ié,X(0y)
He i514002) teleported to [, + 1] Gauss law check. He :
(details omitted)

o
telepc])rted to{j+1}
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MBQS: simulating M, ,,, on gCS(d,n)

Astate in M4, Single-qubit measurements

Q \
o('S :
| :_‘.(""‘J'\(f,f'.f )/
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Aspects of symmetries in MBQS
SPT and holographic interplay




Higher-form symmetries in gCS

(d,n) = (3,1)

(d — n) = 2-form symmetry (n — 1) = O-form symmetry
X
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Higher-form symmetries in gCS

(d,n) = (3,2)

(d — n) = 1-form symmetry (n — 1) = 1-form symmetry

...................
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Higher-form symmetries in gCS

(d — n)-form and (n — 1)-form symmetry:
|8CS) = X(Z,) | gCS) = X(&*_ | )18CS)
withM, , =1{Z,10Z,=0}, M,_, = {Z ekt = 0}.

%k
d—n+1 d—n+1
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SPT order in gCS

Result

gCS(4.n) has an SPT order protected by (d — n)-form and
(n — 1)-form Z,

¢ Two symmetry generators act projectively at the boundaries of the lattice —
SPT See Yoshida (2016) and Roberts-Kubica-Yoshida-Bartlett (2017).

® The simulated state as an edge state of an SPT. see Miyake (2010) for 1d examples.
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Bulk/boundary symmetries in MBQS

A state in M,

Bulk symmetry generator X(Z* ) with

Boundary symmetry generator X(z7 )
= % — — 7%
0 Ld-n+1 = ORatl= “dn’

(3,1) Ising 0-form symmetry X(z}) = HXV —  O-form symmetry X(Z}) = HXf’
vev vev
(3,2) gauge Electric 1-form symmetry X(z¥) = 1-form symmetry X(Z7)
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Bulk/boundary symmetries in MBQS

Consider a d-dimensional Hamiltonian
H=- E Z(05,),

which is symmetric under the transformation with the global (n — 1)-form, X(Z* )

*d—n+1""

Cluster state gCS:

It is described by the local stabilizer conditions:
X(6,)2(95,) | gCS 4 ) = X(6,-1)2(0%6,_1) | 2CS4.0)) = 18CS(am)) -

It can be seen as the ground state of the gauged version of the above Hamiltonian,

Hgauged = Z X(&n)Z(aé'n) y
with the local gauge constraint X(6, )Z(0*c, ) =1 (Vé,_)).

(The global symmetry X(Z¥ ) is a product of local stabilizers X(6,_,)Z(9%5,_,).)
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Bulk/boundary symmetries in MBQS

In other words, the boundary global symmetry is promoted to the bulk(+boundary)
global symmetry X(Z¥ ) |wc) = |ye), and it is gauged in the cluster state.

global (n — 1)-form sym.

Astatein M,

global (n — 1)-form sym.

=%
i"'d—-n+1‘)

“Holographic interplay”
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Comments

Our MBQS measurement pattern is related to the overlap formula below:

00000000
g @ 9 9 9

Zon=Nx { o5oseses
(9) 00000000
8 g o o o

0

: : 0000000
2d classical Ising 0000000
partition function 0 (0|e KX
o (|

(K :real!)

Resource state for (1+1)d
transverse-field Ising model

It is a classical-quantum correspondence (VDB correspondence) [Van den Nest-
Dur-Briegel (2008)] relating a 2d quantum state and a 2d classical statistical
model. see also [Lee-Ji-Bi-Fisher (2022)].
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Comments

% ‘ §°:§°:o:+:+
o 0 9.9
OO 0 GTOTOT

Rewriting it further,

Z(2,1) — ./V X

2d classical Ising
partition function o (0] Toric code
= partially “measuring” out gCS, |,

% & @
e o o o
. & @
® ®© & ¢
® ©® o
. & & @
® e e

(K :real!)

A map from TQFT , ; state to a d-dim classical spin system. We speculate that
physical interpretations is possible through

*Strange correlator [M. Bal et al. (2018) etc.]

*TQFT ;.4 / CFT; correspondence [Chen-Zhang-Ji-Shen-Wang-Zeng-Hung (2022) etc.].
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Summary

Entanglement structure of gCS ;) & Spacetime structure of M, .
Single-qubit measurement on gCS ;) © Hamiltonian quantum simulation of M .
Overlap between a product state and gCS; ;) < Partition function of M, .

(Strange correlator, TQFT /CFT correspondence?)
The gCS possesses (n — 1)- and (d — n)-form global symmetries.

1. Astate of M, as an edge state of an SPT

2. Boundary (n — 1)-from symmetry is promoted to bulk (n — 1)-from symmetry, which is
gauged in gCS.
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