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Abstract: Motivated by the ground state structure of quantum models with all-to-all interactions such as mean-field quantum spin glass models and
the Sachdev-Y e-Kitaev (SYK) model, we propose a tensor network architecture which can accomodate volume law entanglement and a large
ground state degeneracy. We call this architecture the non-local renormalization ansatz (NoRA) because it can be viewed as a generalization of
MERA, DMERA, and branching MERA networks with the constraints of spatial locality removed. We argue that the architecture is potentialy
expressive enough to capture the entanglement and complexity of the ground space of the SYK model, thus making it a suitable variational ansatz,
but we leave a detailed study of SYK to future work. We further explore the architecture in the special case in which the tensors are random Clifford
gates. Here the architecture can be viewed as the encoding map of a random stabilizer code. We introduce a family of codes inspired by the SYK
model which can be chosen to have constant rate and linear distance at the cost of some high weight stabilizers. We also comment on potential
similarities between this code family and the approximate code formed from the SYK ground space.
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[Biddle et al; 2019]

Whatis a renormalization ansatz?

And why should we care?

* Perturbative methods fail to describe strongly coupled bah aa
many-body systems and quantum field theories accurately. I 4 LR EVEET ;

* Approximating such systems as discrete lattices introduces
a “natural” UV cutoff 1/a (inverse lattice spacing).

* States on any such lattice (and their entanglement structure)
can then be approximated using tensor networks.

* D = 1: Matrix product states (MPS) \ (”—\
. (s1) g(s2)  Alsn) | & . e, HA' HA. |—|A lHA
* D > 1: Projected entangled pair states (PEPS) e Z . [Al & Ay ] 8152 sm) ! ? alles |5j/

{eh 5% &y sS4 99 6

* Local observables are efficiently computable, but only

=+ [Verstraete, Cirac; 2019]

1 [ ] 1 1
PN AN
exaCtly for MPS. PEPS can Only be approximated. = @ @ @ . ma){ima"y entang]ed state
4—”/
* Hilbert space still grows exponentially with lattice size. &\ @ @ = f: )
. 6& X 7 G -~
* Ansatz: Use density matrix renormalization group ‘\ i=1
S S : ) L PA RN
(DMRG) to construct a variational tensor network: . 6:? \’!.7 Q:ﬁ N e i e it
* Parametrize different (discrete) energy scales of the - = =
system individually, connected by fine/coarse-graining - @ @ @ 5 A ; r§:J=1 g Tirualp) (U ud|
isometries. I ji i
A JAC R
O
] L} ] L}
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Whatis a renormalization ansatz?
Example: MERA (vidal. 20061

* Multi-Scale Entanglement Renormalization
Ansatz

* “Time” variable @ goes from top of the network
(IR) to the bottom (UV) in O(log N) steps.
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IR (ground state)
@(k) DOFs, short-range entanglement, information localized on the “lattice”.
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UV (lattice state)
O(N > k) DOFs, long range entanglement, information spread out over lattice.
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What is a renormalization ansatz?
Example: MERA |vidal. 20061

* Multi-Scale Entanglement Renormalization
Ansatz

* “Time” variable @ goes from top of the network
(IR) to the bottom (UV) in O(log N) steps.

- o) ¢ L\ n’gnamlw{wll@\
- —
* Local fine-graining isometries (green) “create” .~ | jo)
entanglement and encode theory. _ ’ ’ m’

* Hence MERAS exhibit locality and causal
structure (red cone).

* Network can be efficiently simulated
(“contracted”).

* Local observables can be exactly computed.

* Self-similarity of circuit reflects renormalization
invariance (demanded by DMRG).
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IR (ground state)
@(k) DOFs, short-range entanglement, information localized on the “lattice”.
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What is a renormalization ansatz?
Example: HaPPY (uarlow et al. 20151
* MERA-like toy model for AdS/CFT.

* IR bulk (D-dim AdS) is dual to UV boundary
(D = 1)-dim CFT).
* Can also be interpreted as a PEPS.

* Hyperbolic tessellation of AdS Cauchy slice
produces a RG-conform tensor network.
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What is a renormalization ansatz?
Example: HaPPY [Hariow et al. 20151
* MERA-like toy model for AdS/CFT.

* IR bulk (D-dim AdS) is dual to UV boundary
((D = 1)-dim CFT).
* Can also be interpreted as a PEPS.

* Hyperbolic tessellation of AdS Cauchy slice
produces a RG-conform tensor network.

* Radial direction @ corresponds to
renormalization scale.

* Resulting “causal structure” of HaPPY allows
for exact entanglement wedge reconstruction.
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Whatis a renormalization ansatz?
Example: HaPPY [Hariow et al. 20151
* MERA-like toy model for AdS/CFT.

* IR bulk (D-dim AdS) is dual to UV boundary
(D = 1)-dim CFT).
* Can also be interpreted as a PEPS.

* Hyperbolic tessellation of AdS Cauchy slice
produces a RG-conform tensor network.

* Radial direction @ corresponds to
renormalization scale.

* Resulting “causal structure” of HaPPY allows
for exact entanglement wedge reconstruction.

* Concrete bulk-boundary dictionary.

* Reproduces Ryu-Takayanaki (RT) etc.
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Our goal: Get rid of locality!

(also world domination...) i

* Generalizing the renormalization ansatz like this
opens up applications for a larger variety of models.

* Main interest: SYK (Sachdev-Ye-Kitaev) Model [ — (i)ff/Z Z es ek,

* (0 + 1)-dim. CFT sector in the large N limit. I Stistys: Stgsdl

* CFT-breaking sector dual to deformations of
(1 + 1)-dim. JT (Jackiw-Teichelboim) Gravity ¢ — 1 f d’z . /—g®(R—A)
7 vV ;

to leading order (Schwarzian).
* Many other systems in physics can be approximated \
’ -

as having no spatial DOFs: 5 >
L4
* Spin glasses, nucleons, thermalizing systems. g !
. 5 ’

* However: Lack of causal structure means the circuit ' ‘i
can not be efficiently contracted (classically). ' 1
' ]
' ]

' ’

. ’
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Introducing: NoRA
Also known as RAMEN (sorry Brian :P)

* Eachlayer 1 < # < L has a depth D (const.) g-local
isometry D, acting on the previous n,_; qudits and An,
new “thermal” ancillary qudits | 0)®2

* Like in MERA, D, can encode scale-dependent details
of the theory i.e. its Hamiltonian description and
entanglement structure.

* Renormalization invariance requires An, o e”

4 £=1

—r zf’—].

~r

* ny=k+r”and hence An, = r
*N=n=k+rt = L xlogN (same as MERA)
* Highly degenerate ground space: dim % = d*.

* Scaling k o< N required to align ansatz with (super-
symmetric) SYK properties.

* For fixed k, NoRA can be interpreted as a (stabilizer)
quantum error-correcting code (QECC).
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NoRAasa QECC

A stable basis (getit?) for the future of quantum computing.

* A[[N, k, d]] quantum error-correcting code ...

* ... consists of N physical qudits ...

* ... which encode k logical qudits ...

* ...such that the logical state (code word) is protected from up to d — 1 localized physical qudit flip errors (Hamming code distance).
* Classical ECCs are used in all modern electronic devices.

* Those codes are not easy to translate to quantum due to their dependence on cloning and measurements.

* Stabilizer codes [Gottesmann; 1997] are the current state of the art for QECCs.

* N — k mutually commuting independent Pauli strings S; satisfying S; | w) = |y) for any codeword |y). Those strings form the stabilizer
basis i.e. any linear combination has the same properties.

* Should an error occur such that ;| w) # | ) for some i, then it can be corrected using the associated (well-defined) error operators E,
that satisfy [}, S;] = Owheni # j, and {E,, §;} = 0 otherwise.
* The space of logical operators that commute with all stabilizer basis elements S; hence must map between code words.
* The weight of a stabilizer code is the largest number of non-trivial operators (Pauli X, Y, Z) that occur in a single basis element.
* Any stabilizer basis of NoRA can be written as §; = U'Z, +iU where Z; acts on the ith ancillary qubit |0), and U encodes the circuit.

7
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NoRA asa QECC

Don’t get too excited!

* Any stabilizer QECC can be written as a projective

Hamiltonian with the code space as its ground space:

LH=-Y UM, J;>0, I=(S+D/2
i

* J; are free parameters determining the energy
scales associated to a given stabilizer basis S; (or
equivalent projector basis IT)).

* Correctable errors are interpreted as excitations
on top of the ground state.

* ForNoRA:J; —» J, = A - e 7" D with A,y > 0 due
to renormalization invariance.

* Entropy of associated Gibbs state p = e #/Z obeys

power law at low relative temperatures T/A.

* Growth determined by a/y where @ = log r
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NoRA asaQECC

Some heuristics

Case of scaling k can be expressed as k = r“ and L = a + b, where a, b integers and b fixed

: k 1
« Hence N = r* 4+ r%*?and — = ; constant, implying k o« N N
1+r L ———— N +O0(logN) kfixed
o : : D D iy gr-1
* Circuit complexity estimated by total gates = = Z Hi= = L-k+ e .
t=1 —— . Nlog. N+O(N
* Scaling k case reproduces holographic complexity of JT gravity. g er) i s
Qudit ratio at sub tl R ktr” =
« Qudit ratio at subsequent layers: R, = ——— S r
E 4 Am TR
. . : D d2 =1
« Weight ratio at subsequent approximately g~, where g =~ = g> 1
* Hence, in the limit @ = 0o we expect a phase transition around g? ~ r.
S
. g2 > r: Weight growth dominates over qudit growth => stabilizer weights will be approach (w) = 9 = N.
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NoRA asaQECC

Some heuristics

Case of scaling k can be expressed as k = r“ and L = a + b, where a, b integers and b fixed
k 1

« Hence N = r* + r%*?and — = ; constant, implying k o« N n s
14 7 L . ———— N +O0(logN) kfixed

. . : D D g qr-1

* Circuit complexity estimated by total gates = = Z ne = o Etkes T D
=1 ——— Nlog N+O(N
* Scaling k case reproduces holographic complexity of JT gravity. per) Gl R
Qudit ratio at sub tl R ktr” <
« Qudit ratio at subsequent layers: R, = ———— S r
; ; ; D d2 =1

« Weight ratio at subsequent approximately g~, where g = -g>1

d?

Hence, in the limit a — oo we expect a phase transition around g = r.
2

- N.

. g2 > r: Weight growth dominates over qudit growth => stabilizer weights will be approach (w) = =
q
* gP < r: More qudits are being added than can be scrambled => relative stabilizer weights become vanishingly small.

9
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Numerical Analysis R e
OurSEtup =0 S = i

* Our first goal was to analyze the stabilizer weights and the T T T T T T T I
code distance for a simple implementation of NoRA.

* We used qutrits (bond dimension d = 3), a growth rate of 3

r = 2, and 2-local random Clifford brick wall circuits at S SIS e e i g i
each layer. ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ |

* The stabilizer weights were simply determined by counting. m

* The code distance was approximated using the adversarial
approach.

* Assume the code word | @), is maximally entangled

A

* Finding A is hard, but can be approximated efficiently.
+
* We considered both fixed k, and k scaling with V. |¥anc) m [P )N

with an additional system R.

* The distance of the code defined by U, is then the UmnN

smallest number of additional qudits A required to get
non-zero mutual information

I(A,R) = S(A) + S(R) — S(AR) > 0.
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N-k

Numerical Analysis L
y Maximum possible distance predicted
Code Distance by quantum singleton bound.
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What comes next?

Weight loss and Majorana’s.
* Smaller stabilizer weights = better for experiments. But weights of NoRA are high!
* Explore ways to reduces them (RREF basis, perturbative gadgets, ...)
* All NoRA calculations presented here were made using qudits.
* Want stabilizer operator strings to be Majoranas like in SYK Hamiltonian.
* Could be achieved using Jordan-Wigner, but not natural and very “non-local”
* Current focus: Developing a general Clifford stabilizer formalism for Majorana fermions.
* Naively equivalent to Pauli Cliffords i.e. product of Majoranas = tensor product of Paulis.

* However, Majorana strings have parity that should be preserved by Cliffords. This might lead to
interesting properties (e.g. lower weights, different distance scaling).

* No intuitive interpretation of reduced Majorana stabilizer states, because no tensor product structure.
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Thank You!
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