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Abstract: A long-standing problem in QFT and quantum gravity is the construction of an "IR-finite" S-matrix. Infrared divergences in scattering
theory are intimately tied to the "memory effect” and the existence of an infinite number of "large gauge charges’. A suitable "IR finite" S-matrix
requires the inclusion of states with memory (which do not lie in the standard Fock space). For QED such a construction was achieved by Faddeev
and Kulish by appropriately "dressing” charged particles with memory. However, we show that this construction fails in the case of massless QED,
Y ang-Mills theories, linearized quantum gravity with massless/massive sources, and in full quantum gravity. In the case of quantum gravity, we
prove that the only "Faddeev-Kulish" state is the vacuum state. We also show that non-Faddeev Kulish representations are also unsatisfactory. Thus,
in general, it appears there is no preferred Hilbert space for scattering in QFT and quantum gravity. Nevertheless we show how scattering can be
formulated in a manner that manifestly IR-finite without any "ad-hoc" restrictions or dressing on the states. Finally, we investigate the consequences
of the superselection due to the "large gauge charges" and illustrate that, in QED, nearly all scattering states are completely decohered in the bulk.
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Gravitational and Electromagnetic Memory Effects
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Gravitational and Electromagnetic Memory Effects
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Classical Scattering, Radiation and Memory

A 0) = - J du E (u,0) E(u,0)=0A,

A, (u,0)]
A, (6)

Aab(e) = [ du Nab(u, 9) Nab(u, 6) =S auhab

h,(u, 6)|
A, (6)
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Memory and Charges
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T

i [Campiglia et al. 2017], [Prabhu, 2018] ... 3/8
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Fock Quantization

» The radiative degrees of freedom at .# of gravity and EM fields can be quantized
even in the absence of a “bulk” theory of quantum gravity. [ashtekar, ‘7]

» The standard Fock space ,9565’" is constructed from the “one-particle” Hilbert
space #5” of gravitons:

|h[[2 = 167r/ / dwdQ w|hap(w, 0)]
0 §2

where h,(w, 8) is Fourier transform of h,p(u,6).

4/8
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Fock Quantization
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Fock Quantization
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The radiative degrees of freedom at .# of gravity and EM fields can be quantized
even in the absence of a “bulk” theory of quantum gravity. [ashtekar, '87]

The standard Fock space (%5, |0)) is constructed from the “one-particle” Hilbert
space 5’ of gravitons:

|h][2 = 167r/ / dwdQ w|hap(w, 0)]
0 §2

where h,,(w, 8) is Fourier transform of h,p(u,6).

The Fock space ﬁéﬂ does not contain any states with memory. States with
memory A are elements of a different Fock space ﬁ:f which is unitarily
inequivalent to f(f. This is the source of all IR divergences.

There are an uncountably infinite number of “in/out” Fock spaces labeled by all
possibles memories A"/t Memory is not conserved. To go beyond “inclusive

cross sections” and have a well-defined S-matrix one needs to include states with
memory. 4/8
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Massive QED - Faddeev-Kulish Hilbert Space

Qo() = - () - 5= [ AT

Ar

» Key Idea: The charge at spatial infinity is conserved. Therefore “in” Hilbert space
of eigenstates of the charge Q;o(A) with eigenvalue Q;o(A) will will map to an
“out” Hilbert space of eigenstates with eigenvalue Q;o(\) [Faddeev & Kuiish, 707

5/8
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Massive QED - Faddeev-Kulish Hilbert Space
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Massive QED - Faddeev-Kulish Hilbert Space

Pirsa: 23070043

ki .
Qi(A)=Q;-(A)— — [ AT D)\
-u.rO( ) i ( ) 47[_/ a@
S2
Key Idea: The charge at spatial infinity is conserved. Therefore “in” Hilbert space

of eigenstates of the charge Q,o(\) with eigenvalue Q;o(A) will will map to an

“out” Hilbert space of eigenstates with eigenvalue Q,-o(j\) [Faddeev & Kulish, 70']...

Charge eigenstates are states where the “in” electromagnetic memory is correlated
with the incoming electrons. This yields a Hilbert space %Q,-o of dressed electrons

| OILEN

H
A, consists physically reasonable states and yields an IR finite S-matrix.

This construction fails in all other theories including quantum gravity.

5/8
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Vacuum Gravity - Failure of Faddeev-Kulish Hilbert Space

1 :
OR*(f) = —5- / Al 9?9 (9) + f F(O)N?
S2 P

» The analogous construction in GR is to attempt to correlate the incoming energy
flux of the incoming gravitational radiation with the incoming memory.

The unique eigenstate of Q,%R (f) is the vacuum with vanishing eigenvalue.

» Intuition: Memory and Energy flux are not independent! In gravity, the
gravitational radiation “sources” (i.e. via energy flux) its own memory. Matching
the memory to the energy flux introduces more radiation! This introduces more

energy flux and so on...

There does not appear to be any “preferred” Hilbert space for scattering in QG
(“Non-Faddeev-Kulish” representations also fail) 6/8
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Algebraic Scattering Theory
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The correlation functions of all states that arise in scattering theory are perfectly
well-defined, they simply do not fit into a single Hilbert space.

Given any state |W) in a Hilbert space 7 one can express that state as a list of
correlation functions of operators in an Algebra /. For example,

(X)) > (Dx1)o02))y - -5 (D(x1) - - D(xn))y s - -

Conversely, given a list of correlation functions on &/ (satisfying commutation
relations, positivity, ...) one can construct (by GNS) a Hilbert space where this
list of correlation functions is packaged as a vector |W) € 7. Thus viewing a
state as a list of correlation functions on &7 or as a vector in a Hilbert space are
essentially equivalent. (witten, 2022] [Hollands & Wald, 2014]

However, by considering states as lists of correlation functions one is now freed
from choosing in advance a particular Hilbert space!

7/8
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Algebraic Scattering Theory

» Given a set of correlation functions Wi, on the "in" algebra <%, (i.e. thus
specifying the “in” state) then what is the expected value of any “out” observable
in @,y (which would then specify the “out” state)?

(aout>win fOI' any aout E '%llt‘

» To compute (aout)wm we can use the Heisenberg equations of motion to define an
(invertible) map between the “in” and “out” Algebras [kien, 4]
S L e iy — <30ut.>1uin = <5[3out]>\|1in
» This construction does not pre-suppose what Hilbert space the “out” state lives in
and is therefore manifestly IR finite.

» The (perturbative) formulation of algebraic scattering theory for a massive scalar
field coupled to a massless scalar field can be straightforwardly constructed and
one can compute the correlation functions of any “out” observables (fields,
memory, charges, ...) to any order in perturbation theory [c.s. k. Prabhu, in prep]. 7/8
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Bad Things Happen to “Good” Scattering Data

|
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In any gauge theory, the charges Q.0(\) have serious implications for coherence.
This ultimately comes from the charges “superselect”. Any local gauge invariant
observable @ commutes with all of the charges

[Qi0(A), O] = 0 for all A(0)

A more familiar case of superselection is the total electric charge Q(1). Given
states W, and W, with total charge g1 and ¢, a standard argument shows that
the matrix element (W, |O|W,,) for any local gauge invariant observable O must
vanish

(Vg |[2(1), O]|Vy,) = (g1 — q2) (Wq,|O|Vy,) =0

Therefore, if g1 # g then (W, |O|W,,) = 0. In other words, for any local gauge
invariant observable O, a superposition of W, and W, is an incoherent
superposition — these states cannot interfere.

8/8
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Bad Things Happen to “Good” Scattering Data

* @u(0) = @,-(0; p)

P, = [d3pf(p) p > ® QM

8/8
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Bad Things Happen to “Good” Scattering Data

» An incoming electron W¢ has definite total electric charge but is a superposition
of incoming momenta and therefore superposition of large gauge charges.

» By the same kind of argument that we just used for the total charge, any local
gauge invariant observable O cannot see interference between the different
momentum modes of W¢.

The expected value (O(x))y,, is spacetime translation invariant for any gauge invariant
observable O [p. panielson, G.S. & R. M. Wald, in prep.]

V¢ does not correspond to a localised electron and is not a physical state!

8/8

Pirsa: 23070043 Page 18/22



Bad Things Happen to “Good” Scattering Data

» An incoming electron W¢ has definite total electric charge but is a superposition
of incoming momenta and therefore superposition of large gauge charges.

» By the same kind of argument that we just used for the total charge, any local
gauge invariant observable O cannot see interference between the different
momentum modes of W¢.

The expected value (O(x))y,, is spacetime translation invariant for any gauge invariant
observable O [p. panielson, G.S. & R. M. Wald, in prep.]

V¢ does not correspond to a localised electron and is not a physical state!

» Physical states can be obtained by starting with a localised electron in the bulk.

8/8
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Bad Things Happen to “Good” Scattering Data

" Q) = q
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Bad Things Happen to “Good” Scattering Data
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Yoy = Jd3p flp>® ‘l’ﬁﬁm

1 a A our
—A(6;p,q) = Q;(0;p) — q
4

i @p(6) = q
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IR divergences arise from sticking a state in a Hilbert space to which it doesn’t
belong.

In massive QED the Faddeev-Kulish representation is a preferred representation
but, as opposed to a “proof of principle” it is actually a “fluke”!

Non-Kulish-Faddeev representations don't work

A well-defined (IR-finite) scattering theory can be constructed by simply evolving
“In" correlation functions to “out” correlation functions.

Due to the infrared properties of the theory, the space of asymptotic states in
QED (or Yang Mills) which correspond to physical “bulk” states are highly
fine-tuned and there are many states that are “junk”!

8/8
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