Title: Research Talk 18 - Bespoke Dua Resonance
Speakers:

Collection: Strings 2023

Date: July 26, 2023 - 3:30 PM

URL.: https://pirsa.org/23070042

Abstract: String amplitudes famously accomplish several extraordinary and interrelated mathematical feats, including an infinite spin tower, tame
UV behavior, and dual resonance: the ability of the amplitude to be represented as a sum over a single scattering channel. But how unique are these
properties to string amplitudes? In this talk, | will demonstrate that it is possible to construct infinite new classes of tree-level, dual resonant
amplitudes with customizable, non-Regge mass spectra. Crucia ingredients are Galois theory and a particular dlog transformation of the Veneziano
amplitude. The formalism generalizes naturally to n-point scattering and allows for a worldsheet-like integral representation. In the case of a Regge
spectrum, | will investigate whether the structure of the Veneziano amplitude can be bootstrapped from first principles. Even there, we will find that
there is extrafreedom in the dynamics, alowing for anew class of dual resonant hypergeometric amplitudes with alinear spectrum.
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Dual resonance

* In a QFT, we build amplitudes as the sum of channels of different topologies:

< L

s-channel t-channel
(annihilation) (scattering)

* However, in string theory, the two topologies are indistinguishable, due to the

worldsheet:

Dual resonance
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String amplitudes

* What do string amplitudes do?

» Ultraviolet-complete low-energy physics by taming Planck-
scale pathologies in amplitudes.

* Accomplish this by adding a tower of massive higher-spin
degrees of freedom. (Cannot add just one higher-spin state
without making the problem worse. c.q. CEMZ [1407.5597])

» So string theory answers the question of how to build an amplitude
exchanging higher-spin modes consistently at high energies:

j T

Veneziano amplitude: (1968

L Xtoy
s NUovg CIMENTG Vv
..... LV,
N

Cnns!rucuun of a Crossing. g
~Simm

Ly
for Linoar)y Ris Ie, Regge-Beng

ved A
DE Trajectortes, Tplitiude

G Vesrgave )
CRRY . Genevg

Ficovatn 4 29 Luglig gy

Pirsa: 23070042 Page 4/37



String amplitudes

* What do string amplitudes do?

* Ultraviolet-complete low-energy physics by taming Planck-
scale pathologies in amplitudes.

* Accomplish this by adding a tower of massive higher-spin
degrees of freedom. (Cannot add just one higher-spin state
without making the problem worse. c.q. CEMZ [1407.5597])

» So string theory answers the question of how to build an amplitude
exchanging higher-spin modes consistently at high energies:
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String amplitudes

What makes (tree-level, planar) string amplitudes unique?

X Dual resonance?

X Towers of higher-spin states?

X Tame UV behavior?

X Straightforward generalization to n-point amplitudes?
X Worldsheet integral representation?

What properties of Veneziano amplitudes enable these miracles?

Regge spectrum with m? o« n?
In this talk, we will construct non-string amplitudes that satisfy all the desired
properties marked with ), even while exhibiting custom non-Regge spectra.
The question of what uniquely fixes string amplitudes remains open, and we

now have a plethora of other amplitudes to understand: Are they somehow
part of string theory? What physics do they describe?
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Dual resonance and UV finiteness

* Dual resonance is deeply tied to the asymptotic scaling of the amplitude in the
Regge limit (large s, fixed t) Cheung, GR [2302.12263]

» For an amplitude satisfying crossing A(s,t) = A(t, s), with tree-level poles at
s,t = p(n), then as long as the residue at s = oo is well defined,

il dSA(S,t) — A (h)

2m o 8

we have dual resonance:

A(s,t) = ) + Z:O e = Z A(t, s)
/

Need infinite number of poles
to resum the propagator
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Dual resonance and UV finiteness

» Dual resonance is deeply tied to the asymptotic scaling of the amplitude in the
Regge limit (large s, fixed t) Cheung, GR [2302.12263]

» For an amplitude satisfying crossing A(s,t) = A(t, s), with tree-level poles at
s,t = p(n), then as long as the residue at s = oo is well defined,

1 dSA(S,t) T

§=00

271 s

we have dual resonance:

A(s,8) = Aoo(t) + i e o o i St S)t = A(t, s)
n=0 :

£ p(n)y—s pu(n) —

* For Veneziano amplitude, Ay (s — oco,t) ~ s = A, (t) =0 for t <0, so

Ay (s,t) = w — i Ry (n,t)

['(—s—1t) edins S
1I‘(t+n—|—1 n+1
Bl= = e nvz[lﬁ-l}
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Spectral curve

* Define a function f(u,r) whose zero locus will fix the spectrum of the theory:
f(p,v) =0

kinematic argument level argument
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Spectral curve

Define a function f(u,v) whose zero locus will fix the spectrum of the theory:

flu,v) =0

We will pick f(u,v) = P(v) — pQ(v) for some polynomials P, Q so the
spectrum is a rational polynomial:

uin) = D)

Q(n)

If we choose P, ) to be monic, with P of degree h and () of degree h — 1,
then u(n) is asymptotically Regge, as required on general grounds. {20 Huo,

Komarqodak\ Sever,
5 . Zhiboedov [1607.04253]
Plo) =D obktr Q) = Ek 1%1/
Po=q1 =1

For sufficiently large h, we can fit any finite number of specified masses in the
spectrum.
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Galois meets Veneziano

Write f as a product over its roots: f(u,v) = H(u — va(1))

When s,t = u(n), there exists some v, € {v} that equals n.

We define our amplitude by the Galois sum over the Veneziano amplitude,
sending s,t — v4(s), vg(t):

Als,t) =) Av(va(s)va(t))
a,B
* Sum is over the Galois group of the roots of f

Simple poles at s,t = u(n)

We can write our amplitude in a remarkable dlog form as a kinematic
transformation of the Mandelstam variables:

Il do 1 dr
A= 5z L i v f 2w
= 5{ dlog f(s,0) follogf(t,1-)AV((_Jr o

213 ;

2mi
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Asymptotics and control theory

In the Regge limit of s — oo at fixed t, string amplitudes scale exponentially,
AV (S,t) ~ St

How do the roots v, (s) behave in this limit?
* One (call it vy) asymptotes to s: limg,o 1p(s)/s =1
* The other h — 1 limit to the s-independent roots of Q(v)

The Regge limit of our bespoke amplitude therefore goes like:

Ase(t) ~ lim ZB: (Sw(m LN VQ(S)V,SH))

a#0
Dual resonance demands well defined A (t), which requires:
Re(vs(t)) < 0 for all 3, over our chosen range of ¢

= Control theory: Hurwitz stability, Kharitonov’s theorem, etc.

Aws(t) = 303 Av(lim va(s), va(t)
B

a#0
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Dual resonance and Newton’s identities

» Given [ satisfying the control theory conditions, A(s,t) has a dual resonant
representation,

A(s,t) = Ax(t) + Z ;(ET(S’—t)S

* The branch cuts in s cancel in the Galois sum over the propagators:

i __ Onf(s,n)
L=
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Dual resonance and Newton’s identities

» Given [ satisfying the control theory conditions, A(s,t) has a dual resonant
representation,

A(s,t) = Axo(t) + Z %

* The residues R(n,t) are polynomials in t. All of the branch cuts in the v3(t)
have precisely cancelled. We can calculate them directly by computing the
power sums di(t) = 3., va(t)* using Newton’s identities:

o~ tag ¥ 0
2(p2 — tg2) n-—-tq 1 e 0

dy(t) = (-1)*

3(ps — tgs) P2 — tgo ol

: : : : 1
k(pr — tqx) DPr—1 —tqr—1 Pr—2—tqs—2 -+ D1 —1tq

- 205 ]
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Dual resonance and Newton’s identities

» Given [ satisfying the control theory conditions, A(s,t) has a dual resonant
representation,

A(s,t) = Ax(t) + Z u}(%g"’j)s

* Even more directly, we can make use of the dlog form of the amplitude:
!
2

R(n,t) = ¢ () " Rv(n, v (2)) = 2  diog(7(t, ) Ry (n, 7
g8

» Deforming the contour to 7 = oo, we can explicitly calculate the residue
coefficients:

R(n,t) = > bp(m)t* = 3" an,eGy” (cos 0)
k=0 =0

(1) i)
kl(n —k)! o0

bi(n) = lim [r"~**187~* (Ry (n,T) 8,0} log f(t,7)|,_,)]
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Simplest nonlinear model

A particularly nice choice of polynomials is the following:

P(n)=n’+d(n+1) n?
—
Qn)=n+1 n+l

i)

Residue at infinity gives a quartic contact term:

1 ds
Ap(t) = — —A(s,t) =1
®) = L@S (5,1)

e

Dual resonant amplitude:
o0
ik
A, t) =1+ R(n,t)
n=0

= L) =

Satisfies partial wave unitarity for all § € [—0.5, —0.354], setting mext = 0
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Simplest nonlinear model

* General h = 2 model:

n2+p1n+p2
n+ g2

p(n) =

» Parameter space satisfying dual resonance and partial wave unitarity:

2 T
Mext = 0 Mext = =i
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Post-Regge expansion

* Expand in series around the asymptotic spectrum:
K KA

— i ~ 72 wiea S e
p(n) = —vi) + k1 + e 0w (n — v, )h—1

e Fixing m2, =0 and ag,0 = a1,1 = 0, unitarity and dual resonance require
v, € [—1.229,0) in the h = 2 case.

* For

h=3: h=4:

1

1
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Post-Regge expansion

* Expand in series around the asymptotic spectrum:
A e e R
p(n) = —vi) + kK1 + S e (n — v, )h—1
» Fixing app =a11 =0and p(n) = AIn+ p(0) for 0 <n < h — 1, the parameter
space becomes: i

forbidden:
spinning tachyons
05— - PR
1.0 0.5
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Higher-point generalization

* There is a natural generalization of our construction to the scattering of an
arbitrary number of particles.

e Write the planar basis of Mandelstam invariants as {s;}
(e.g., four-point basis is {sr} = {s12,s23})

* Take the higher-point string amplitude Ay ({s;}) and remap each planar invariant:

A({sr}) = (HZ) Ay ({va; (s1)})

i ar

- (H Log Jor "’*’)) Av({va, (1))

271
I
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Worldsheet representation

Worldsheet integral form of the Veneziano amplitude:

1
AV(SI% 523) = / dx :2,'--81"’-1(]_ = I)'Sza-l
0

The structure of the integrand allows the Galois sum to factorize, giving a
worldsheet integral representation of our bespoke amplitudes:

1
A(s12,523) = / deZx_”“lz(“'”)_l Z(l — ) Vezs(s20)=1
0

X179 Q23

Defining the special function p(z,s) = 3. z77=(*), this generalizes
straightforwardly to higher-point scattering:

* Write s;; = > ¢;;157 in planar basis

* Take Koba-Nielsen integral form of the higher-point amplitude and
send [, ;(zi —2;)7% — [[; o ([];c; (s — )7, 51

* For example, five-point string amplitude:

T R 1=y R 1 — zy) %5t
1—zy ) T—zy (1-=zy)
2(1 = z)y(l — y)

1 1 _/1:“512 (
Ay (s12, 523, S34, 545, S51) =/ / dz dy
o Jo
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Integer spectrum bootstrap

* As we have shown, dual resonance and a well-defined pole at infinity are

equivalent, so we start with a dual resonant form of the amplitude, with arbitrary
residues.

* A priori, this is a two-variable problem:

o0

A(s, t) = i e )

n—t
n=0

* Turn into a single-variable problem by choosing special kinematics,
t=s-—k, keN

Crossing becomes:

A(s, s — k) = A(s — k, ) =>Z~°"Sk) Zm

n=0 n=0

00 k-1
I Z Rn(S S :ﬂ;’) — Rn_k(S) e Z RanS_—Sk)

—
n==k n=0

Cheung, GR [2302.12263]
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Integer spectrum bootstrap

k-1

E Ris-E -~ R. (s R,(s—-k
$ Bala =B~ Rockle) _ 5 Fule 1)

n—=s
n=~k n=0

demanding
nopolesats =n <k
yields

o

Ron=K)— . _i(n), il s

» Strictly speaking, neither necessary nor sufficient for crossing. We will
take the residue constraint above as motivation and see what we find.
All subsequent examples will indeed satisfy this constraint and
converge.

Cheung, GR [2302.12263]
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Integer spectrum bootstrap

We have n conditions
R,.(n - k) = Ry_x(n), =k« n

on the n + 1 free parameters in the residue ansatz:

Ru(t) = Z At
m=0

Defining A, = A, and for brevity writing 2! = I'(z + 1) for 2 € C, we find the
general solution:

Ra(t) = Z iy = B

£ ml (t—m)! (n—m)!

Remarkably, we numerically find that choosing A,, such that the s-channel
representation of A(s,t) converges always yields a crossing-symmetric amplitude:
an infinite-parameter family of dual resonant amplitudes with linear spectra.

Cheung, GR [2302.12263]
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Veneziano amplitude

1

e |etuschoose A, = —
m)!

(t+n)!

* The Vandermonde identity then implies R, (t) = T

* The amplitude is thus:

_ T(=9)T(-t)
I'(—s—1)

Veneziano amplitude
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Hypergeometric amplitude

7!

o Letuschoose )\, = ————
T (mtn)

reR

(t+n+r)lr!

U e

* From the definition of the generalized hypergeometric function,

o0

i l a1, ..., Gm ;z] :Z(al)k---(am)kz_k
k=

bl,---,bﬂ

the amplitude becomes

< G0k (bn)k K

o0

il 1, =s,1+t+71
Als,t) = _—ESFQl 1—-s8, 147 ’1]

* Using a Thomae transformation,

=S tenl T

New hypergeometric amplitude

Cheung, GR [2302.12263]
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Hard scattering

In the high-energy, fixed-angle limit,
|s|, |t| = oo, t/s fixed

the hypergeometric amplitude exhibits the scaling:

A(s,t) ~ BG4 % +-, B(s,t) = (s+1t)log(s+t) — slogs —tlogt + ---
st

In the physical region, cosf =1 + % € [-1,1], one has B < 0, so the amplitude
falls off as a power law ~ r/st, unless r = 0, where the exponential decay of the
string amplitude obtains.
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A worldsheet interpretation?

Remarkably, the hypergeometric amplitude has an integral representation,

1 1 —y=1,r=1 t
_ - s
A(s,t) —fr'/o /0 dz dy 1= z)

reminiscent the Koba-Nielsen form for the Veneziano amplitude,

;‘17-5-1

1
4-point: (#) :f e
p AVcn b dz (1 P x)t+1

Cheung, GR [2302.12263]
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A worldsheet interpretation?

Remarkably, the hypergeometric amplitude has an integral representation,
1 1 —s—1, r—1 t
_ . e =)
A(s, t) _T./o /0 dz dy 1=z

reminiscent the Koba-Nielsen form for the Veneziano amplitude,

p—S12—1y=s4—1 ! S23+834—S51
e Ly (1—zy)
5-point: f / dz dy (1 —2) 1 (1 = g)sr 1

Cheung, GR [2302.12263]

Pirsa: 23070042 Page 33/37



Coon amplitudes

* Historically, string amplitudes predate the realization that the theory was about
strings at all. Exploring amplitudes can lead to new physics, as we've seen from

this talk.

» Also satisfying our physical constraints is the ¢g-deformed generalization of
Veneziano discovered by Coon (1969, unfortunately forgotten for decades:

Recent surge of interest:
* unitarity

Figueroa, Tourkine [2201.12331];
Bhardwaj et al. [2212.00764];
Jepsen [2303.02149]

string amplitudes with
similar properties
Maldacena, GR [2207.06426]
construction and
generalization

Citations per year

Geiser, Lindwasser [2207.08855, 2210.14920]
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qg-hypergeometric amplitude

* We can generalize this construction to the g-deformed integers [n], = g
obtaining a family of amplitudes that subsumes the Veneziano, Coon, and
hypergeometric amplitudes:

A

Veneziano
Coon

1+ q;

=M R, (7)) qgfrq(—a)rq(—r)wl 0 ]

h-0ly Eieo=a g%

New g-hypergeometric amplitude

Cheung, GR [2302.12263]

Pirsa: 23070042 Page 35/37



irsa: 23070042 Page 36/37




Pirsa: 23070042

* We have constructed new infinite-parameter families of amplitudes obeying:

¢ Meromorphicity

* Crossing symmetry
* Polynomial residues
* Partial wave unitarity
* UV boundedness

* Dual resonance

* Galois sum construction: bespoke spectra
* Worldsheet-like representation
* n-point generalization

* Bootstrap construction with Regge spectrum: hypergeometric amplitudes

To prove that string theory is the unique theory of quantum gravity, we must
explore whether it can be bootstrapped from first principles.

Alternative structures that we find along the way can help us understand the
mechanism by which strings become inevitable and give us insights into new
structures within string theory itself.
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