Title: Research Talk 2 - Burns holography

Speakers: Atul Sharma

Collection: Strings 2023

Date: July 24, 2023 - 10:45 AM

URL: https://pirsa.org/23070017

Abstract: I will describe a complete, top-down example of celestial holography, based on recent work with Costello and Paquette. Our duality relates certain models of self-dual gauge theory and conformal gravity, placed on an asymptotically flat four-dimensional spacetime called Burns space, to a two-dimensional chiral algebra living on D1 branes in a topological string theory on twistor space.

Pirsa: 23070017 Page 1/9

Burns holography

Atul Sharma Harvard

Work with K. Costello & N. M. Paquette

Pirsa: 23070017 Page 2/9

Celestial holography: quantum gravity in asymptotically flat spacetimes is dual to a CFT on the celestial sphere

[Strominger '17] [Pasterski, Pate, Raclariu '21]

► This talk: build an explicit example on Burns space

Costello, Paquette, AS [PRL 061602] [2306.00940]

[Costello, Paquette '22]

► Main takeaway: in our example

$$\frac{\text{Celestial}}{\text{holography}} = \frac{\text{Twisted}}{\text{holography}} + \frac{\text{Twistor}}{\text{strings}}$$

1/7

Pirsa: 23070017 Page 3/9

• Twistor space of M = projective 2-spinor bundle

$$S^2 \to Z \to M$$

[Penrose '67] [Atiyah, Hitchin, Singer '78]

▶ Main trick: for $M = \text{Blowup}_0(\mathbb{C}^2)$ with "Burns metric"

$$Z \simeq \mathbb{SL}_2(\mathbb{C}) + \text{boundaries}$$

[LeBrun '91] [Pontecorvo '92]

Recycle holography for B-model on deformed conifold

I

$$\mathbb{SL}_2(\mathbb{C}) \simeq \mathrm{AdS}_3 \times S^3$$

[Costello, Gaiotto '18] [Bonetti, Rastelli '16]

[Dijkgraaf, Vafa '02]

• KK reduce along S^2 fibers of $Z \to M$

▶ Burns metric is a Euclidean signature, asymptotically flat, Kähler metric that is scalar-flat (but not Ricci-flat)

Pirsa: 23070017 Page 5/9

The theory on Burns space

•
$$\mathcal{K} = K + \rho$$

• $g: Burns space \rightarrow SO(8)$

[Mabuchi '86] [Donaldson '85] [Nair '91] [Losev, Moore, Nekrasov, Shatashvili '95] [Ooguri, Vafa '91] [Yang '77]

$$S_{\mathrm{4d}} = \int_{M} \mathrm{Ric}(\mathcal{K}) \wedge \partial \mathcal{K} \wedge \bar{\partial} \mathcal{K}$$
$$+ \int_{M} \partial \bar{\partial} \mathcal{K} \wedge \mathrm{tr} \big(\mathsf{g}^{-1} \partial \mathsf{g} \wedge \mathsf{g}^{-1} \bar{\partial} \mathsf{g} \big) - \frac{1}{3} \int_{M \times [0,1]} \partial \bar{\partial} \mathcal{K} \wedge \mathrm{tr} \big(\tilde{\mathsf{g}}^{-1} \mathrm{d} \tilde{\mathsf{g}} \big)^{3}$$

3

- Eoms: $R(\mathcal{K}) = 0$ $F^{-}(A) = 0, \quad A = -\bar{\partial} g g^{-1}$
- ightharpoonup The Wess-Zumino term imposes quantization of N.

4/7

The celestial chiral algebra

▶ Theory of N D1s + 8 D5s + O5 in twistor space of \mathbb{C}^2

[Costello '21]

 $ightharpoonup \operatorname{Sp}(N)$ gauge theory with $\operatorname{SO}(8)$ flavor symmetry

[Costello, Li '19]

D1-D1
$$X_{iab}(z) \in \mathbb{C}^2 \otimes \wedge^2 \mathbb{C}^{2N}$$
 $X_{iab}(z) X_{jcd}(w) \sim \frac{1}{z-w} \, \varepsilon_{ij} \varepsilon_{a[c|} \varepsilon_{b|d]}$
D1-D5 $I_{ra}(z) \in \mathbb{C}^8 \otimes \mathbb{C}^{2N}$ $I_{ra}(z) I_{sb}(w) \sim \frac{1}{z-w} \, \delta_{rs} \varepsilon_{ab}$
Weight $(\frac{1}{2},0)$ bosons

Defect boundary conditions

$$X \sim 1/z$$
 at $z = 0, \infty$
 $I \sim 1/\sqrt{z}$ at $z = 0, \infty$

Most general poles consistent with regularity of bulk-brane couplings (Koszul duality)

"Ramond puncture"

[Costello, Paquette '20, '22] [Paquette, Williams '21]

5/7

Pirsa: 23070017 Page 7/9

Testing the duality: an example

Gauge invariant operators:

Soft currents
$$J_{rs}[k,l](z) = I_r X_1^{(k} X_2^{l)} I_s$$
 [Strominger '21]
$$\text{dual to soft modes of}$$

$$\text{4d WZW on Burns space}$$

$$Hard states \qquad J_{rs}(\omega,z,\bar{z}) = I_r \mathrm{e}^{\omega z(X_1 + \bar{z}X_2)} I_s$$

Planar correlator without defects reproduces 2-pt amplitude of Hawking, Page & Pope '80.

$$\left\langle J_{pq}(\omega_{1},z_{1},ar{z}_{1})\,J_{rs}(\omega_{2},z_{2},ar{z}_{2})
ight
angle =-rac{N}{z_{12}^{2}}\,J_{0}igg(\sqrt{4N\omega_{1}\omega_{2}z_{1}z_{2}}rac{ar{z}_{12}}{z_{12}}igg)\,\mathrm{tr}(\mathfrak{t}_{pq}\mathfrak{t}_{rs})$$

6/7

Pirsa: 23070017 Page 8/9

Further tests & future directions

- ightharpoonup Collinear limits match chiral algebra OPEs at 0th and 1st order in N.
- ightharpoonup (Tree) amplitudes enjoy enhanced conformal symmetry in z, so are conjecturally computed by the chiral algebra without defects.
- ▶ Form factors are in 1:1 correspondence with correlators built from nonzero defect 1-point functions.
- ► Is there a dual of Witten's supersymmetric twistor string?

 Can we venture beyond self-dual sectors?

 [Costello, Paquette '20]
- Are there multi-centered generalizations of our duality?

 [Gaiotto, Budzik '22]
 [Hartnoll, Policastro '04]
- Can we discover dualities for self-dual Einstein gravity? [Skinner'13] [Bittleston, Heuveline, Skinner'23]

[Donaldson, Friedman '89]

7/7

Pirsa: 23070017 Page 9/9