Title: Petz recovery from subsystems in conformal field theory
Speakers: Shreya Vardhan

Collection: It from Qubit 2023

Date: July 31, 2023 - 1:45 PM

URL.: https://pirsa.org/23070011

Abstract: We probe the multipartite entanglement structure of the vacuum state of a CFT in 1+1 dimensions, using recovery operations that attempt
to reconstruct the density matrix in some region from its reduced density matrices on smaller subregions. We use an explicit recovery channel
known as the twirled Petz map, and study distance measures such as the fidelity, relative entropy, and trace distance between the original state and
the recovered state. One setup we study in detail involves three contiguous intervals A, B and C on a spatia slice, where we can view these
guantities as measuring correlations between A and C that are not mediated by the region B that lies between them. We show that each of the
distance measures is both UV finite and independent of the operator content of the CFT, and hence depends only on the central charge and the
cross-ratio of the intervals. We evaluate these universal quantities numerically using lattice simulations in critical spin chain models, and derive their
analytic formsin the limit where A and C are close using the OPE expansion. We also compare the mutual information between various subsystems
in the original and recovered states, which leads to a more qualitative understanding of the differences between them. Further, we introduce
generalizations of the recovery operation to more than three adjacent intervals, for which the fidelity is again universal with respect to the operator
content.
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Background and Motivations
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Bipartite entanglement in conformal field theory

o Consider a pure state [¢) in a system AB.

Sao= —Trpalogpal, pa=Trgl) (Y|

@ The entanglement entropy has a clear operational interpretation:

A B Locc A S B .
[¥) " [§, EPR|pairs

@ For a single interval A in the vacuum state of a CFT in 1+1 D,
A

el T

UV divergence reflects large amount of short-distance entanglement.
Grows with Lp, reflecting long-range correlations at criticality.

Does not depend on the operator content.

Useful for identifying c-function, RT formula, many other applications.
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Questions about multipartite entanglement

@ Now consider the reduced density matrix of the CFT vacuum state on three adjacent

regions A, B, C. A nraive model for correlations among these regions:
A B c
r [ I 1

/&

Quantities like reflected entropy show that the state does not have this simple bipartite
structure. Operational meaning not well-understood.

In this talk, we will address the following question: To what extent are the correlations
between A and C mediated by B?

More precisely, consider the following operation:
PABC PAB

TI‘C
B Ty o

How close is the reconstructed state pagc to the original state pagc?
A first question: are there setups where pagc = paBc?
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Review of a setup with perfect recovery

@ In the CFT vacuum state, take B to be an interval on a spatial slice, and A and C to be
nU” interva|5 on e|ther S|de Casini and Huerta

In this setup, the conditional mutual information (CMI) vanishes:
I(A: C|B)=S(AB)+ S(BC) — S(B) — S(ABC) =0.

In any quantum mechanical system, vanishing of CMI is equivalent to perfect recovery
USiI‘Ig an exp“Cit ChannEI Hayden, Jozsa, Petz, Winter

Define the Petz map
1 1 1 1

Peic(-) = ch ﬂ;é (')P;é ch

Then I(A: C|B), = 0 is equivalent to
pasc = Pe—ec(paB) = pasc.
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CMI for intervals on a spatial slice

@ Now consider three adjacent intervals on a spatial slice:

o o o n= LaLc
B C (Lg + Lg)(Lg + L¢)
L Il J
L¢

The CMI is non-zero, and is given by
I(A: C|B) = ‘% log(1 — 1)

The recovery operation cannot be carried out perfectly.

Is the CMI a quantitative measure of how well the recovery works?

In any quantum-mechanical system, we have the following inequality:
maXAF(PABC:PAsc) > e /A C|B)/2 ﬁg\)\éc = pPac’ Pg°

where F is the fidelity. sunge, Renner, Sutter, Wilde, Winter

When the intervals are far apart,  — 0, and the fidelity approaches 1.

For a direct quantitative answer to our operational question: evaluate F(pagc, p pABC .
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Summary

@ We consider a few different distance measures: fidelity, relative entropy, trace distance.
Different operational interpretations, but show similar behaviors,

In all cases, we use the explicit twirled Petz map.

We use a replica trick to express each of these distance measures as a four-point function
of twist operators in Syy.

Each of the distance measures turns out to be independent of the UV cutoff, and
universal with respect to the operator content.

We use the OPE to find behaviour in 7 — 1 limit.

We also evaluate these quantities numerically for all 7 using various critical spin chain
models.

In all regimes, the fidelity is better than the CMI lower bound.

We also use both approaches to address a more qualitative question:
What are the differences in correlations among different regions in the states pagc and

paBc’?
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Explain twist operator method for fidelity

Summarize numerical results for fidelity and relative entropy

Discuss OPE limits in twist operator formalism

Discuss qualitative differences between pagc and pagc.
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Replica trick and twist operators for fidelity
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Replica trick
@ The fidelity is defined as:

F(p,0) = Tr[(v/po/p)2] = Tr[(p0)?] = i Tr[(po)*]

@ Combining this with the definition of the twirled Petz map:

Fk,nl,ng,ml,mg

F(Papc, pasc) = lim

k—)% M=

where
Fk,nl,nz,ml,mz = TI’[(pgéPgPABP%QPgépAB(_‘)k]
@ Try to evaluate this for integer values of all parameters, assume that the resulting
expression is analytic in the parameters, and continue to non-integer values.
@ We will refer to the above limit as the “replica limit.”
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Replica trick
@ The fidelity is defined as:

k

F(p,0) = Trl(v/po/p)?] = Tr{(po)?] = lim Tr[(po)"]

@ Combining this with the definition of the twirled Petz map:

sl A ; 2
F(p,g\B)CaPABC) = lim . Fk,nl,nz,ml,mz

k—)% n——

where
Fk,nl,nz,ml,mz = Tr[(pgépglpABp?pgépABC)k]
@ Try to evaluate this for integer values of all parameters, assume that the resulting
expression is analytic in the parameters, and continue to non-integer values.
@ We will refer to the above limit as the “replica limit.”

Pirsa: 23070011 Page 11/32



Page 11 of 29

Representation in terms of twist operators

@ We can write
> Fk,ﬂl,ﬂz,m1,m2 = Tr[(pgépgpABPEQPSépABC)k]
as a path integral on Nk copies, N = ny + my + np + my + 2, glued together according to
some permutations 74 g ¢ in regions A, B, C.
@ This path integral can be rewritten as a four-point function of twist operators in Syx
placed at the endpoints of the intervals.

© ¥,(p): i(x*) > r(x*) on going anticlockwise around p
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Twist operator dimensions and UV finiteness

@ The twist operators are primary, with dimensions determined by cycle structure.
@ In general, if 7 has I cycles of length ay, ..., am:
m
G 1]
A = — | aj — —
i Z; 24 ( ’ a,-)
=

Plugging in the cycle structures of the twist operators appearing in the fidelity, all
dimensions go to zero in the replica limit.

For general values of m;, n;, k, we need to include an overall factor to cancel dependence
on UV cutoff. This factor goes to 1 when dimensions go to zero, indicating that the
fidelity is independent of the UV cutoff.

Simpler combinations of the reduced density matrices are bad approximations to pagc:
F(paBc, pa ® psc) goes to zero as € — 0.
A

I I
\ \

In contrast, pagc is able to capture the short-distance entanglement structure of pagc.
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Universality of the fidelity

@ To evaluate a four-point function of twist operators such as
\ <ZT;1(Xl)zTngA(XQ)ZTngB(X3)ZTC (xa))
we can find a map to a covering space on which fields are single-valued.

Path integral on the base space with twist operator insertions = path integral on covering
space without operator insertions.

Genus of covering space is determined by cycle structure of twist operators through the
Riemann-Hurwitz formula.

For twist operators appearing in Fi n, n,.my.n,, the genus is zero.
For zero genus,

S1 71—Nk
Fic,ny,ny,my,m; = <):1—A‘1(Xl)):frglm(xﬂzfc-lm(XS)ZTC(M)) = e’LZ;
where S, is the Louiville action, determined by the covering map.

SL — € fk,nl,ng,ml,mz(n)
In the replica limit, we get:

—log F = cf(n).
for some universal function f.
Not possible to find an explicit expression for fx p, p, m;,m, using this method.
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Numerical results for fidelity and relative entropy

Pirsa: 23070011 Page 15/32



Verifying universality in critical spin chains

@ We consider lattice realizations of:
o Ising CFT, ¢ = 0.5 (solid line).

o Tricritical Ising model, ¢ = 0.7 (diamond markers).

o Free boson CFT, ¢ =1 (“+" markers).

@ For each A, the curves for all models collapse
together.

@ We can also consider
Dalpllo) = —

@ o — 1 limit is relative entropy,
D(pl|o) = Tr[plog p] — Tr[plogo].

e Dy(pascl||pasc)/c is the same for all 2D CFTs.

log Tr[p%c'™%], a€[0,1]

@ The trace distance also depends only on ¢ and 7.
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Ising

TCI

XXZA = -06
XXZA =06
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Comparison to conditional mutual information

@ Consider the maximum and average values of log F over A,

v — log mfo = —log F(A=0)

—JogF = — / dAB(A) log F (PABCaﬁfa)gC)

—00
@ General information-theoretic bounds tells us that junge, Renner, Sutter, Wilde, Winter

—logmaxF < I(A: C|B)/2, —logF <I(A:C|B)/2.

@ The bounds are not saturated:
/

—

—— _lgF
— max log F'

—— I(A:C|B)/2

10! 10°
n
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Behaviour at small and large n

@ In the n — 1 limit,
* I(A: C|B)/2 = — §|og(1—n)

e C
~ log F(pasc, Bagc) = — 5 log(1 = 1) + O(1)

,, C
D(PABC“P;\\BC) S log(1 —n) + O(1),

e We will explain these behaviors using the OPE expansion, and relate the O(1)
contributions to other entanglement quantities.

@ In the n — 0 limit:

I(A: C|B)/2 m%n

— log max F ~a; cn2
—log F =aycn
D=0 3, e

@ The replica trick will lead to answers inconsistent with numerical results in this limit.
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OPE limits of fidelity
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n — 1 limit

When 1 = 1, the region B disappears, pasc = pac, and pasc = pa ® pc.
We know that F(pac, pa ® pc) vanishes in the continuum limit, so F(pagc, pasc) should
approach 0 as n — 1.

Using OPE for operators at the endpoints of B, we get the expansion
(ZTA-l(Xl)ZTngA(Xz)ZTCqTB (X3)ZTC(X4)>

fr30,f10,4 ar .
= filx A7) ) :Tp(l Sl gl B i = )

p P
Key input: which operators appear in the OPE?

ztgltA ETEll'B X3 =7 X2 Op

V\WWN —

b 2 =L
X2 13114 717, o

The lowest dimension such operator is ZTg1TA. We can use its cycle structure to see its
dimension, which is ¢/9 in the replica limit.

Next-to-leading contribution from a fractional mode of the stress tensor acting on ZTEITA,
which has dimension ¢/9 + 2/3 in the replica limit.
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@ This gives the prediction

k

F(pasc, pasc) = bo(1 — n)/° + byc(1 — 5)c/9+2/3
for some constants by, by .

@ Recall that

f-23éa fl 034

bO:

co,
We can show that for any two adjacent intervals R and S,
1

fi0.a < Tr[((pr ® ps) prs)?]

£ (Trs lTrR (
230; -

CO,?

and

@ How should the second quantity be interpreted?
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n — 0 limit
@ Recall that in this limit, the CMI vanishes. So from the information-theoretic lower

bound, the fidelity should approach 1.

We can see that leading contribution to OPE comes from an operator whose dimension
goes to zero in replica limit.

So the leading contribution is a constant. We can also see that the constant is 1.
However, we can argue in this case that all other OPE coefficients and conformal block
coefficients vanish in the replica limit.

To see this, we can note that the same OPE coefficients will also contribute to the
quantity

(27;1 (Xl)ZTB—ITA (Xz)zTA_lTB (x3)X:,(xa))

which becomes equal to Tr[pagc] = 1 in the replica limit.

Seems to imply that F approaches 1 faster than any power of 1, which is inconsistent
with numerics.

It seems that the replica limit does not commute with the OPE limit. Same issue in all
a— relative entropies.

Pirsa: 23070011 Page 22/32



@ This gives the prediction
L3

F(pasc, pasc) = bo(1 — n)/° + byc(1 — 5)c/9+2/3
for some constants by, b;.

@ Recall that

f-23éa fl 034

bO:

co,
We can show that for any two adjacent intervals R and S,
1

fi0.4 o< Tr[((pr ® ps) prs)?]

f (Trs lTrR (
230; -

CO,?

and

@ How should the second quantity be interpreted?
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n — 0 limit
@ Recall that in this limit, the CMI vanishes. So from the information-theoretic lower

bound, the fidelity should approach 1.

We can see that leading contribution to OPE comes from an operator whose dimension
goes to zero in replica limit.

So the leading contribution is a constant. We can also see that the constant is 1.
However, we can argue in this case that all other OPE coefficients and conformal block
coefficients vanish in the replica limit.

To see this, we can note that the same OPE coefficients will also contribute to the
quantity

(ZT;1 (Xl)sz—lTA (Xz)zTA_lTB (Xg)ZTA (X4)>

which becomes equal to Tr[pagc] = 1 in the replica limit.
Seems to imply that F approaches 1 faster than any power of 1, which is inconsistent
with numerics.

It seems that the replica limit does not commute with the OPE limit. Same issue in all
a— relative entropies.

Pirsa: 23070011 Page 24/32



Structure of correlations in pagc and pasc
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Difference in /(A : B) in 7 — 1 limit

Pirsa: 23070011

The reduced density, matrices on A and BC are unchanged between pagc and pagc, but

reduced density matrices on AB and AC are changed.

Consider the difference in /(A : B) between pagc and jagc,

SI(A:B)=1I(A:B),—I(A:B);>0

Can be evaluated using similar techniques to the distance measures. UV finite and
universal.

In the n — 1 limit, d/(A : B) approaches a non-zero constant.

Lalc
(La+Lg)(Le+Lc)’

e At the same time, the distance measures between pagc and pagc diverge.

e Recall that n = so the region B vanishes in this limit.

The non-zero constant value seems to result from a competition between these two
effects. Can be seen both analytically and numerically.
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Difference in /(A : C) in the n — 1 limit
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The difference *
A:C)=1l{(A:C),— I{A: C);
is also UV finite, but not universal.

0I(A: C) can be seen as a more direct measure of
“correlations between A and C that are not
mediated by B” than /(A: C|B) or F(pasc, pasc).

In the n — 1 limit, it has a universal divergence:
J(A: C)= —% log(1—7n), n—1

This shows that a diverging amount of correlations
between A and C are not present in pagc, and are
therefore likely to be direct correlations.

Divergence is same as that of the CMI.

3I{A: B) (fermion)
OI(A: C) (fermion)
SI(A: B) (Ising)
dI(A: C) (Ising)
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Mutual information differences in 7 — 0 limit

For small 7, we find,
JI(A: Cllodnic,

where A is the dimension of the second-lowest-dimension primary operator.
In contrast, recall leading behaviour of /(A : C): caiabrese, Cardy, Tonni

I(A: C), x 1?2, n—=0.
The leading behaviour of the CMI thus precisely agrees between pagc and pagc. Shows
in a precise way that these leading correlations are mediated by B, and are not of the Bell
pair type.

There is a qualitative as well as quantitative change in entanglement between A and C on
going from the near-interval limit to the far-interval limit.

In the n — 0 limit, 6/(A: B) &< n, and in particular much larger than §/(A: C).
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Difference in /(A : C) in the n — 1 limit

The difference *
A:C)=Il{(A:C),— {A: C);

is also UV finite, but not universal. ol Dithemin)
dI(A: C) (fermion)

: - dI{A: B) (Ising)
dI(A: C) can be seen as a more direct measure of . BI(A: C) (lsing)

“correlations between A and C that are not
mediated by B” than /(A : C|B) or F(pasc, pasc).

0.25
In the n — 1 limit, it has a universal divergence:

I(A: C)= —% log(1—7n), n—1

This shows that a diverging amount of correlations
between A and C are not present in pagc, and are
therefore likely to be direct correlations.

Divergence is same as that of the CMI.
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Comparison to c-theorem

@ Recall that the entropic c-theorem in (1+41) dimensions tells us that in the vacuum state
of any relativistic QFT,
d
—(RS'(R)) < 0.
—=(RS'(R)) <0

The inequality is saturated in CFTs.
@ We can rearrange the above equation to:

5'(R)
. cn 2~ 2
S"(R)A® > ——=A

= 2S(R+A)-S(R)-S(R+2A)> AE
@ The LHS can be seen as /(A : C|B) for the following configuration:

S'(R)
R

A R A

@ While the c-theorem inequality is saturated in CFT, we found that the general inequality
I(A: C|B) > —logF is not.

@ |s there a stronger version of the QI inequality, which does coincide with the c-theorem,
and in particular is saturated in CFTs?
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Comparison to c-theorem

@ Recall that the entropic c-theorem in (1+41) dimensions tells us that in the vacuum state
of any relativistic QFT,
d
—(RS'(R)) < 0.
—=(RS'(R)) <0

The inequality is saturated in CFTs.
@ We can rearrange the above equation to:

S'(R)
. 2~ 2
S"(R)A® > —=A

= 2S(R+A)-S(R)-S(R+2A)> At
@ The LHS can be seen as /(A : C|B) for the following configuration:

S'(R)
R

A R A

@ While the c-theorem inequality is saturated in CFT, we found that the general inequality
I(A: C|B) > —logF is not.

@ |s there a stronger version of the QI inequality, which does coincide with the c-theorem,
and in particular is saturated in CFTs?
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Further questions

@ Is there some holographic dual of —log F or relative entropy between pagc and pasc?

e Can differences between pagc and pagc provide some new insight into topological phase
transitions or non-equilibrium dynamics?

@ Are there classes of states where the QI inequality is saturated, and if so what is their
structure?

Thank you!
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