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An SYK model with a Scaling Similarity

Comments on Qubit themes

Juan Maldacena

It from Qubit
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Based on work in progress with

Anna Biggs Vladimir Narovlansky
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We will discuss a supersymmetric SYK model
which has peculiar properties.
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The model

« N=2 supersymmetric quantum mechanics with a random gt" order
superpotential.

= /dtdQQ[quiqui + W((f))] : W = Z Czjkgb"(;gjqbk ¢ is real

/= /qﬁf + h1ith1i + VYaitha; + (O;W)? + th1ih2;0,0;,W

I = /Qﬁ? e ’ﬁblﬂj)li 5 ¢2i¢2i i Ff il Cz'iji¢j¢k e Cijk"ﬁbli"/)2j¢k

(different than than the N=2 model considered by Fu, Gaiotto, JM, Sachdev)

Dyna m ica | bOSOﬂS - fe rm ions (We wrote explicitly the g=3 version)
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There is also an ‘N = 4 version = complex
bosons and fermions.
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Multicenter black
holes/ branes at CY

The model in d>1

BFSS black holes

singularities

Stanford, Witten .
. X / Anninos, Anous, Denef
A LB L el (Before SYK), N=4 SUSY version

Lin, Shao, Wang, Yin L P

The model
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The BFSS black hole

Banks, Fischler, Shenker, Susskind

Itzhaki, JM, Sonnenschein, Yankielowicz

1990s

Matrix Quantum Black hole in 10d,

with SO(9) symmetry

Mechanics, at large N,
at finite temperature
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Matrix Quantum Black hole in 10d,

with SO(9) symmetry

Mechanics, at large N,
at finite temperature

It is the simplest quantum mechanical theory™ that
has a bulk Einstein gravity dual.

*as opposed to QFT
" as opposed to higher spin gravity theories
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Why are we returning to this topic?
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| atest |lattice Montecarlo simulations

1 BFSS Berkowitz et al.

o Large N & Cont y=05 T
31 BFSS fit Berkowitz et al.

— SUGRA ltzhaki et al.

— SUGRA p=05 i

E/N?

0.00 0.25 0.50 0.75 1.00
T

Monte Carlo String/M-theory Collaboration (MCSMC)
- Pateloudis, Bergner, Hanada, Rinaldi, Schaefer, Viranas, Watanabe, Bodendorfer

- Berkowitz, Rinaldi, Hanada, Ishiki, Shimasaki, Vranas
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They have computed a certain higher derivative

correction which has not been yet reproduced
analytically.

They are more advanced than analytic computations!
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The low temperature entropy goes as

log Z o S o< N279/5

Asopposedto oo 7 ox S ox Sy + CT x N + NcT

For SYK (almost conformal symmetry)
or near extremal black holes.
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The low temperature entropy goes as

log Z x S o« N2T9/%

Asopposedto oo 7 ox S ox Sy + CT x N + NcT

For SYK (almost conformal symmetry)
or near extremal black holes.
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This power law is governed by a 'scaling
similarity”

A scaling transformation that rescales the action
- symmetry of equations of motion.
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This motivated us to look for simpler models with this
realization of scaling.
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Kabat, Lifschytz, Lowe, and Lin, Shao, Wang, Yin,
had considered a matrix model and truncated
their planar diagrams to melon diagrams.
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We reinterpreted their equations as the large N
equations of the SYK- model we introduced
above.
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They did numerical and analytic analysis showing that
the free energy is

log Z o< constant + TR
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Anninos, Anous, Denef , had suggested that this model
would have a spin glass phase.

We failed to find such a phase.
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End of the long motivation.
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The large N equations can be derived as in the
usual SYK model case.

Integrate the disorder = bilocal term in the
action.

Introduce G and X variables, etc.
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We need to consider the following two point
functions

Galtt) =

1 ) (4! 1 2 i 1 nn
FEOSE),  Go=gu),  Gr= GUEF)

Auxiliary fields
Finite temperature: t ~t+ 8

Gy(t,t") = Gt —t') etc.
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An aside

Cor = AGOF () ?

For odd q, = the model has a Z, symmetry that forbids it, as long as the symmetry is not spontaneously broken.

We found that the solutions we will describe are locally stable under turning on a vev for this variable.

So we will set it to zero.
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The large N equations

Definitions of the self energies:

Gop(w)lw? — Bpw)] =1, Gy(W)[-iw —Yy(W)] =1, GrW[l-ZrW)]=1

Self energies in terms of G (melon approximation) :

Y = —2GrGy + 2G,,

Both sides are functions of (t,t’), or really t-t’.

Ty —12GuG
(e W (we specialized to g=3 and J=1 to avoid clutter)
Sr=-Gj
2 ‘]3

Pirsa: 23070008 Page 26/111



Naive low energy analysis

Anninos, Anous, Denef

~ t—2A

Set all functions to be power laws, G, , and similarly for the others.

Assume SUSY at short times.

1 1 1
Gp x £2A+2

Insert in equations 2 Find A =0 .

Not really a solution, some coefficients diverge as A = 0
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One can solve them numerically
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The solution for at a low temperature
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We will now discuss an approximate scheme
to solve the model at low temperatures.
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Start with the full large N action:

log Z 1 . 1
O]g’v - Z [log[—iw — 25 (w)] — 3 log(w? — 2%4) — 3 log(1 — QEf)] +

Wn

B 1 - = 2 .
‘|—/ dtdt’ <—G¢E¢ . Glfzf S 2G‘¢’E'¢' o §G.ng>_l i (q 9 )G:/’Gg;h)
0 :

=

Expapng FRinm -

: SR

G¢ — Gqs e (5G¢, (5G¢ < G¢ :
Independent of Euclidean time Non-zero Matsubara frequencies.

foreample: G 1G5 — G 0G4Gy + 6G£0G?,
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I =const+ 1o+ 15+ 14+ ---
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Solve exactly up to the quadratic terms

logZ 1
25 = —log2 + il

N2 VBBG,/?

(for g=3, other values of q are similar)
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Start with the full large N action:

log Z 1 . 1
O]g’v = Z [log[—iw — 25 (w)] — 3 log(w? — 2%4) — 3 log(1 — QEf)] +

Wn

B 1 : =1 2, 2
+/ dtdt’ (—G¢2¢, L LM §G.fGi_l + (q 5 )G:/’Gzﬁ-h)
’ .

e

EXpdiigd T as —r st e e -

RN

G¢ — G¢, o (5G¢, (5G¢ < G¢ :
Independent of Euclidean time Non-zero Matsubara frequencies. .

foreample: G 1G5 — G 0G4Gy + 6G£0G?,
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I =const+ 1o+ 15+ 14+ ---
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Solve exactly up to the quadratic terms

log Zime |
25 = —log2 + &

N2 VBBG,/?

(for g=3, other values of q are similar)
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Add the higher order terms perturbatively

logiZ Nl 1
e = — log 2 4

N 2 VBBGY? 326G

Ground state entropy
Cubic terms (and quartic, for g>3)

Quadratic terms

- - 6
Minimize with respect to G > determine Gy -2 find power log Z « T
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Scaling similarity

logZ 1 s 1

N 2 VBBGY? 326G

.1_

Has a simple scaling similarity = extends to the approximate solution
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An irrelevant comment

For genericq :

logZocNT% ; for ¢ =18 log Z & NT's

Coincidence.

We will see that the physics is rather different.
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s the ground state entropy arising from BPS
states?
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The Witten index and the ground state
entropy.

Iy = Tr[(—1)Fe PH]

Iy,= 0. (Proved for odd q and odd N).

We expect no exact susy zero energy states.
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The solution obeys the supersymmetric relations at
short times.

GFOC87G¢O(8$G¢ : TL 0

No SUSY breaking (other than the temperature) at large N.
The ground state energy vanishes at large N

—> SUSY breaking is probably very small (perhaps non-perturbative, e™).
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An aside

There isan ‘N=4 model which is very similar.
Real fields = complex fields.

Same large N equations. In the final action N - 2 N.
The index is non-zero I, = 2V

Entropy:

log Z 1 log Z
ol :—10g2_|_..., o

:10g2—|—...
N ly=2 2 N =4
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Now we |look at the next term of the free
energy

logZ 1 1
s = — log 2 i

N 2 VBBGY? 326G

Comes from the quadratic approximation
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Essentially the same as a g=2 model.

GyG; 6G6G 4Gy ¥ 6G G

Similar to a model with

2

L
N ?

P~

Wy = Cijdidh; (C) o

2 ~q—2
i m* x G



The effective g=2 model

2

m i
W’ mQO(qu

Wy = Cijdi0; <02>

Diagonalize the matrix f'; .

Each eigenvalue 2 leads to a bosonic + fermionic oscillator. = ground state energies cancel.

There is a temperature dependent contribution to the free energy.

Pirsa: 23070008 Page 46/111



The effective g=2 model.

At low energies, constant density =2

A

Eigenvalue C like modes of a 1+1 dimensional field.
density

m »

Frequency

T m = typical eigenvalue.

Free energy log Z x TL x N—, Lox N/m 1/L ~ spacing between them
m
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The effective g=2 model

2

m s
W’ mQO(qu

Wy = Cijdid; <02>

Diagonalize the matrix f'; :

Each eigenvalue 2 leads to a bosonic + fermionic oscillator. = ground state energies cancel.

There is a temperature dependent contribution to the free energy.
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The effective g=2 model.

At low energies, constant density =2

A

Eigenvalue C like modes of a 1+1 dimensional field.
density

m >

Frequency

T m = typical eigenvalue.

Free energy log Z x TL x N—, L ox N/m 1/L ~ spacing between them
m
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Finally

logzZ 1 1
s = — log 2 al

N 2 - VBBGY? 382G}

Comes from the quadratic approximation
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Finally

logzZ 1 1
ot = — log 2 il

N 2 VBAGY? 332G

Comes from the quadratic approximation

|

Just this term wants to drive G¢ to zero.

To decrease the typical frequency of the oscillators = increases the entropy
of the bosonic oscillators.
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The quadratic solution more explicitly

0G4 . log [2 sin f]

m 2
1 1
oG
1’bocmﬁsin%
1 e
G o > QOZQWI, me:Gfb2

mfB32 sin —‘23 ’
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Finally

logzZ 1 1
ot = — log 2 il

N 2 - VBBGY? 382G}

Comes from the cubic (and quartic) interactions,
wants to increase the value of @

log Z

6
g8
N XX

. - 2
Minimizing with respect to G(p - G¢> oc O5
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A puzzle

The expectation value of ¢? grows as we lower the temperature

(¢%) o B3 BJ > 1
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Finally

logzZ 1 1
EC = — log 2 1

N 2 - VBBGY? 382G}

Comes from the cubic (and quartic) interactions,
wants to increase the value of @

log Z

6
5
N X

. - 2
Minimizing with respect to G(p - G¢> e dlo i
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A puzzle

The expectation value of ¢p? grows as we lower the temperature

(¢%) o B3 BJ > 1
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High temperature.
Classical behavior

Pirsa: 23070008

J(47)

25|

0.5

1.5 H

= Numerics

— Analytic: low temperature |-
-Analytic: high temperature

10

15

20

25 30

BJ
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1.0

05 N
0.0 o "'_r_"'T'_"\'"_T_" T
gast
]
|
o
1
J
4
!
102
]

~— —— — 1
~_J 0o

Soft directions

We are exploring the soft directions of the
potential
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Exploring the potential

“Eigenvalues’” of the tensor
& Qi; Cartwright, Strumfels

Cijn®jdr = Acgz\/g?

Look for low values of the "Eigenvalues” A.
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How many solutions ?

Exponentially many solutions.

£
2

22 real solutions.

Breiding (2019)
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Eigenvalue distribution for the tensor

p(A) = e>F())

FN)

| Order one function. L
N i
2 ....’ . \

2

Exponentially many low lying eigenvalues

(Is integrable at zero).

log Z 1 Gurau

Zero temperature entropy s log2+---
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Fluctuations around the soft directions

= 1.
¢’L o 4¢’L —I_ 5¢ " General fluctuations

Eigenvalues

W ~ Cijr¢idd;0dr = Mirdp;ddx
W

Random matrix whose scale is set by G_¢ ~ ¢? . Gives the previous quadratic result.
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1.0
0.5

SRR g ) Mo
0.0 B e T
T I
B

Soft directions

Quadratic fluctuations

Hiding
,-J 0.4

102
4

~— —— — 1
~_ 0o

Quadratic fluctuations + their interactions =
lead to a saddle along the soft directions.
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1.0
0.5

e BRI i __,_.,.T,_,_‘_,__T_.,.’_,_ T
- T
- T T

Soft directions

Quadratic fluctuations

g T
L4

H02
4

~— —— —— 1
ey

Quadratic fluctuations + their interactions =
lead to a saddle along the soft directions.
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Since there are these many almost flat
directions, do we get a spin glass behavior?

As conjectured by Anninos, Anous, Denef
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This question was analyzed in a purely bosonic
model, the p-spin model.

V ~ Cijk i@k ¢; = fixed
It indeed had a spin glass phase at low
temperatures.

Cugliandolo, Grempel, da Silva Santos

Anous, Haehl
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We expected the answer to be yes...
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We expected the answer to be yes...
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Introduce replicas

_ Replicaindices: a,b=1,..,n
7

Gy —+ 02

Now we have similar equations but with n x n matrices

Zn —1 1 I
log Z = lim = lim — (e "* —1)=—N lim =
n—0 n n—0 N n—0 N
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In cases with a spin glass phase, the first signature
is usually a solution of the following form
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Consider matrices with off diagonal components

b Gy g ¢
G, =1 9 Gy g
g 9 Gy

Edwards, Anderson

Independent of T

We found no solutions of this kind, with 0 < g < G¢,, asn—>0



One step replica symmetry breaking

([qu il g 9 g9 g )
g Gg) 9 g9 g9 g
cav_ | 9 9 (G fJJ g g
g 9gLg Gy g g

g 9 9 g {qu é}

\ 9 9 g9 9 g Gy



For small temperatures, we also considered the
full Parisi ansatz. We did not find a solution either.
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Interpretation:

It looks like the field does not get " 'stuck™ in one
valley.

It manages to spread across all valleys.
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Chaos in the model?

Since, the leading expression is due to a
guadratic approximation

9

we expect that the Lyapunov exponent is NOT
maximal, and it is probably small at low
temperatures.
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Conclusions

* We discussed an SYK-like model which has a peculiar low energy
behavior.

* We discussed the physical origin of this behavior.

 The model has important differences with BFSS
* The zero temperature entropy
* Not maximally chaotic
* Growing vacuum expectation value at low temperatures.

* No spin glass behavior.
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Maybe it is useful for something else...
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Comments on It from Qubit themes

Juan Maldacena

It from Qubit

Perimeter Institute, July 2023
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Making It from Qubit

Gravity difficulty
—

Einstein gravity for BFSS black hole

NEl6 =175
A3

Now
Breaking codes (RSA)

1 50 7000 :
Number of qubits
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Making It from Qubit

Gravity difficulty
—

Einstein gravity for BFSS black hole

NEl6 =~ 75
A3

Now
Breaking codes (RSA)

1 50 7000 .
Number of qubits
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he 1970’s was the era of
gravitational thermodynamics

Wheeler, Bekenstein,
Hawking, Gibbons, ...

Thermodynamics from geometry, areas’

“Really generalized entropies: A +S_..iqe
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The ideas of the 70’s stayed outside the
horizon.

We can now go behind the horizon.
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Wormhole calculus

The surprising effectiveness of the semiclassical gravitational path integral

* The Page curve
Penington, Alhmeiri, Engelhardt, Marolf, Maxfield, ...

* Long time behavior of partition functions and correlators.

Saad, Shenker, Stanford, ...
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The current ones lead us to think that gravity is
related to entanglement, with complexity
constraints.
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We now seem to be heading into algebraic geometry...

Leutheusser, Liu, Witten, Chandrasekaran, Longo, Penington, Jensen, Sorce, Speranza, Kolchmeyer, Engelhardt,....
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The developments of the 70’s lead to the search
for microstates.

In the 90’s, this succeeded via D-branes, AdS/CFT,
etc.

Strominger, Vafa, ...
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What are the hidden parameters” or the
interpretation of the ensemble”?

Are they not there?
Is it just an illusion of our defective understanding?
Approximate solutions of the constraints?

Sums over all solutions of the constraints?

Coleman, Giddings, Strominger, Polchinski, Saad, Shenker, Stanford, Marolf, Maxfield, Chandra, Hartman, Maloney, Collier,
Belin, DeBoer, Nayak, Sonner, Anous, Jefferis, Kolchmeyer, Mukhametzhanoy, ...
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Recall light in a falling elevator

—\& Outside view

time

Einstein

Inside view
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" horizon Outside view: burns due to
Hawking radiation

/ horizon

Inside view: nothing happens
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We have not yet made them fully compatible

Stanford, Yang

...Akers, Engelhardt, Harlow, Penington, Vardhan
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We have not yet made them fully compatible

e When is it smooth?
e When is it not?
* Firewalls can sometimes form. Stanford, Yang

...Akers, Engelhardt, Harlow, Penington, Vardhan
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We have not yet made them fully compatible

* When is it smooth?

* When is it not?

* Firewalls can sometimes form. Stanford, Yang
* They do not have to form after the Page time.

...Akers, Engelhardt, Harlow, Penington, Vardhan
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There is probably a great lesson about gravity
still to be discovered.
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The most important problem in quantum
gravity
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The beginning of our universe

Dark Energy
Accolerated Expansion

Afterglow Light
Pattern  Dark Ages Development of
380,000 yrs. Galaxies, Planets, etc.

Infiation

uanium
actuatlons
ars

about 400 million yrs.

Big Bang Ex
11.7 blllion years
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Understanding the black hole singularity
should help.
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| thought that we would need to understand
locality at sub-AdS scales, since the proper time to
the singularity is of order the radius of curvature

of the black hole geometry.

Maybe not..
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Let’s make an amusing comment on the
connection between quantum gravity and
holography
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Reminder on optical holography

Reflected rays,

call them "Holographic Haze”

Reference ray, o
Call it “basic” ray

irsa: 23070008

Interference pattern involves

[~V Uy + cc.
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Gravity as optical holography

Z = (U |V i)

Hologram = Z as a function of
all possible boundary conditions

102/111
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Gravity as optical holography

Z = (Up|Vyn)

Hologram = Z as a function of
all possible boundary conditions
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Gravity as optical holography

Hartle-Hawking wavefunction

Position on the screen = , 7 — (U, |
Choice of boundary metric A < b| HH)

Hologram = Z as a function of
all possible boundary conditions
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Gravity as optical holography

Hartle-Hawking wavefunction <
2 Superspace” = the metaverse

Position on the screen = , 7 — (U, |
Choice of boundary metric A (o |V m)

Hologram = Z as a function of
all possible boundary conditions
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The metaverse as a hologram

The metaverse as
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Thanks to Matt Headrick and Patrick Hayden
for organizing the collaboration.
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It frem bit?
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If gravity is emergent, and GR = QM, then why
isn’t QM emergent also?
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Are these just old fashioned thoughts?
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Thank you.'
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