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Abstract: In holography, the quantum extremal surface formula relates the entropy of a boundary state to the sum of two terms: the area term and the
entropy of bulk fields inside the entanglement wedge. As the bulk effective field theory suffers from UV divergences, the second term must be
regularized. It has been conjectured since the work of Susskind and Uglum that the renormalization of Newton's constant in the area term exactly
cancels the difference between different choices of regularization for bulk entropy. In this talk, | will explain how the recent devel opments on von
Neumann algebras appearing in the large N limit of holography allow to prove this claim within the framework of holographic quantum error
correction, and to reinterpret it as an instance of the ER=EPR paradigm. Thistalk is based on the paper arXiv:2302.01938.
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The Quantum Extremal Surface Formula

The Quantum Extremal Surface (QES) Formula is one of the
cornerstones of holography.
AlX)

5(p) = 2Cy

Y is the quantum extremal surface associated to the subregion. It
is defined by extremizing the RHS.
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The Quantum Extremal Surface Formula

In the case of one side of a two-sided black hole, QES reduces to
the calculation of black hole entropy.

Az
S([_)L) = 4(GN) - S(f-)L.bulk)‘
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Ambiguities in entropy formulas

® Even though entropy formulas are fundamental, it is not so
straightforward to properly define each of their terms!

A(x)
S(pr)=——=+S il ¥
(pe) Gy T (PL.bulk)
* In the bulk effective field theory description, Gy = 1/N? =

or is perturbatively small, and the entropy Sp,i of quantum
fields across X is infinite: needs to be regulated.

® On the boundary, we are computing a UV-complete quantity:
Gy (or 1/N?) needs to be taken small but nonzero.

e \We face an apparent paradox: the right hand side looks
cutoff dependent while the left hand side is finite and
cannot depend on any cutoff!
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The Susskind—Uglum conjecture

A(X)
Gy

S= + S(pr bulk)-

® Susskind—Uglum conjecture: The renormalization of the
area term (i.e. Newton’s constant) exactly cancels that of the
bulk entropy term!

® This talk: recent discussions on the large N limit of
holography, as well as holographic
quantum error correction, allow to formulate this conjecture
precisely and prove It.
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Outline

® | - Large N von Neumann algebras
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Outline

® | - Large N von Neumann algebras
® || - Code subspace renormalization

® ||l - Proof of the Susskind—Uglum conjecture
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Part |

Large NV von Neumann algebras
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Large N and von Neumann types

® |t has recently been realized that the discrepancy between the
finite N and infinite N cases can be traced back to a
change of type of von Neumann algebra.

® The finite /V algebras, corresponding to the boundary
UV-complete theories, have type /.

® The infinite \V algebras, or perturbation theory in 1/N, do
not have type /. [Leutheusser, Liu, Witten]

® An algebra that does not have type / means that all its states
are infinitely entangled with the rest of the system. Its
underlying Hilbert space does not factorize.

® Then only differences of entropy (type //) or
no notion of entropy at all (type ///) can be defined.
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Bulk vs boundary

® |n our context,

B(Hx)

® The boundary is UV-complete: the Hilbert space factorizes,
and the algebras B(’Hf\;R) are type / factors.

® The bulk is at large N: the Hilbert space doesn’t factorize and
the algebras MR do not have type /.
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Quantu m error correction

® |t is a bit tricky to think about holographic
quantum error correction in this context.

e The code should map the large N von Neumann algebra Mt
to the finite NV type / von Neumann algebra B(H%) on the
boundary.

® Then one shouldn’t trust the map for N-dependent operators
that break the EFT: the code works pointwise at large N but
not uniformly. [Faulkner, Li
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Entropy formula

Recall the entropy formula:

A(X)
4Gy

S(pL) = + S(pL.buik)-

® The bulk entropy term cannot be defined for the large N
algebra! Entropy is divergent.

® The full large N algebra cannot be considered as a code
subspace to prove this formula.

® What do we do instead? Single out small subalgebras of the
large N algebra.

® How do we pick them?

Pirsa: 23070004 Page 13/29



Part ||

Code subspace renormalization
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Type | and bounded entropy

® What does a good regulated subalgebra look like?

® \We want the regulated algebra to match the
bulk entropy term in the large N limit.

® |n order to hope for a finite entropy, the regulated algebra
must have type /: either finite-dimensional or B(H) for H a
separable Hilbert space.

e Schmidt decompositions can be defined for states on these
algebras, and von Neumann entropy is defined in the usual
way.

Pirsa: 23070004 Page 15/29



Constraints from complementary recovery

e All known QEC proofs of entropy formulas require an
assumption of complementary recovery.

* We want to find a way to regulate the large N algebra that
respects this structure.

® We want something like:

ML L MR

1]

L. ¥ R
My —— My A

® This is a nontrivial constraint.

® Takesaki’s theorem (1972): “?" should be a
conditional expectation, and H ) should be a Hilbert space
of invariant states under the conditional expectation.
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Conditional expectations and Takesaki's theorem

ML s MR H
El 5-'{ l
My —— MY H

e The map &) is called a conditional expectation. For
ni, Ny € M’{ and m e Mt

Ex(nymny) = niEx(m)ns.
e States |V) € H ) satisfy
(V[ Ex(m) V) = (V| m|W).

® The interpretation of &) is that it integrates out some
entanglement in a way that is compatible with complementary
recovery.

Pirsa: 23070004 Page 17/29



Conditional expectations onto a type / factor

® More precisely, if the factor Mt acts on a Hilbert space H and
MY is a type | subfactor of M%, then
ML = Mo ME<.
e A conditional expectation £, : Mt — Mﬁ then has the form
E(X ® X) = (xal X° [xa) (X ® Id).

e The Hilbert space of invariant states under &) is of the form

:Hmv = ’H,\ ®

Wn b
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Conditional expectations onto a type / factor

® More precisely, if the factor Mt acts on a Hilbert space # and
MY is a type | subfactor of M%, then
'8 Lo Lo
M= = My @ M,".
e A conditional expectation £, : MLt — Mﬁ then has the form

E£(X ® X°) = (xal X€ [xa) (X ® Id).

The Hilbert space of invariant states under &) is of the form

mev = ’H,\ ®

Yok

So the conditional expectation integrates out the degrees of
Lo . ;
freedom of M,"" by applying !
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Code subspace renormalization schemes

This framework based on conditional expectations allows to
regulate the bulk theory with several nested code spaces:

ML L

® The regulated algebras M, , are type [ factors.
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Proof of the Susskind—Uglum conjecture
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Back to the code
sk | b | R ||l

®* We now have a consistent way of renormalizing the code
subspace.

® Recall that there is an encoding map from the effective
theory at large N to the finite NV theory

Vv :H — HE @ HR.

® However closeness to isometry and reconstruction properties
can only be formulated pointwise.

® |dea here: ask for stronger reconstruction properties, but only
for renormalized subalgebras.
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A smaller code

\‘;\\ —— e \\
Bog)| | ME ) M| | B

® Now the mapis Vi : Hi @ HE — HE @ HE.
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Areas in approximate codes

IMAX) IMAX)

/ \ b L D /'\)
' .‘ A
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® The area associated to this subdivision is defined by the
formula

A(HL) = S(|CJ), Le).

® There is only one value of area per code subspace, but the
area changes depending on the
choice of renormalized code subspace!

® The larger the renormalized code subspace, the smaller the
area term.
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An approximate entropy formula

Following Akers and Penington, one can derive the following result:

e Suppose that for W) € H ), and for all unitary operators

U)f. U,\R In Mf\- and Mf, there exist unitary operators 0’\- and

UE (chosen in a measurable way) in B(#) and B(HE) such
that

|VnUS Ux (W) = UX U Vi [W) || < 6,

where 0y decays faster than any polynomial in 1/N.
®* Then,

S(IW) , M) + A(HS) — S(Ww V), B(HR))| — 0.

N—oo
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Running the RG flow

® The crucial point is that this formula is valid for any choice
of cutoff A (as long as it doesn’t depend on N).

® Then, we have both formulas for |V) € H,;:

S(IW), M) + A(H) = S(V [W), B(HK)) — O,

N—oo

S(1W) . M) + AGHE) — S(Viu [W), BHE))| — 0.

® One can show that entropy factors out in the bulk:

S(IW), My) = S(IV) . M) + S5([V) , M)

® We get exactly Susskind—Uglum!

JAHL) — (S(1W), Ma,) + A(H3))| — 0,

H N—oo

with My = M, @ M),,.
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Susskind-Uglum as ER=EPR

® This proof based on quantum error correction provides a
reinterpretation of Susskind—-Uglum.

® What makes it work? The bigger the code subspace, the

smaller the entropy of the CJ state (i.e. the area term) will
be.

® This is because the missing entropy is now counted as part of
the code subspace entropy!

® There is some entropy in the code that can be counted either
as bulk entropy or as geometry. Whether it is one or the
other amounts to making a choice of renormalization scale,
which is completely unphysical.

® This is the paradigm of ER=EPR: no physical distinction
between entanglement and emergent geometry in gravity.
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Recap

There is an algebraic way to regulate a von Neumann algebra
with divergent entropy while preserving complementarity,
through conditional expectations.

By restricting the holographic code to the regulated
subalgebras, one can prove an entropy formula.

As the cutoff runs, the bulk entropy gets repackaged into the
area term.

There seems to be a close connection between ER=EPR and
renormalization.

Can we make sense of it in full quantum gravity?
(ongoing with M. Marcolli and J. McNamara)
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Thank you!
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