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Abstract: Neural quantum states (NQSs) have emerged as a novel promising numerical method to solve the quantum many-body problem. However,
it has remained a central challenge to train modern large-scale deep network architectures to desired quantum state accuracy, which would be vital
in utilizing the full power of NQSs and making them competitive or superior to conventional numerical approaches. Here, we propose a
minimum-step stochastic reconfiguration (MinSR) method that reduces the optimization complexity by orders of magnitude while keeping similar
accuracy as compared to conventional stochastic reconfiguration. MinSR allows for accurate training on unprecedentedly deep NQS with up to 64
layers and more than 105 parameters in the spin-1/2 Heisenberg J1-J2 models on the sgquare lattice. We find that this approach yields better
variational energies as compared to existing numerical results and we further observe that the accuracy of our ground state calculations approaches
different levels of machine precision on modern GPU and TPU hardware. The MinSR method opens up the potential to make NQS superior as
compared to conventional computational methods with the capability to address yet inaccessible regimes for two-dimensional quantum matter in the
future.
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THE QUANTUM MANY-BODY PROBLEM

GROUND STATES AND DYNAMICS

HAMILTONIAN

EIGENSTATES DYNAMICS
ground state R
H|E) = E|E) i) = HIp(1)
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A KEY CHALLENGE

INTERACTING QUANTUM MATTER IN 2D

SOLVING THE QUANTUM-MANY PROBLEM IS DIFFICULT
Complexity is a matter of the method

EXACT TENSOR
DIAGONALIZATION NETWORKS

QUANTUM
MONTE CARLO

Curse of Entanglement Sign problem

dimensionality
Contraction
complexity
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NEURAL QUANTUM STATE (NQS)

NOVEL CLASS OF VARIATIONAL WAVE FUNCTIONS

QUANTUM STATES IN COMPUTATIONAL BASIS

EDIAD
S l

encode into an artificial neural network (ANN) SPREPFT
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T

o b ,\\‘\

Carleo & Troyer, Science ‘17
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NEURAL QUANTUM STATE (NQS)

NOVEL CLASS OF VARIATIONAL WAVE FUNCTIONS

QUANTUM STATES IN COMPUTATIONAL BASIS

EDIAD
S l

encode into an artificial neural network (ANN)

UNIVERSAL APPROXIMATION THEOREM
Numerically exact approach
Convergence parameter: size of ANN

Carleo & Troyer, Science ‘17
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GROUND STATES

STOCHASTIC RECONFIGURATION (SR)

NQS IS A VARIATIONAL WAVE FUNCTION
V(0)) = D ¥s(0)]s)

GROUND STATE: Minimize variational energy
(¥(0)|H]|(0))
(¥(0)|v(6))

SR: Imaginary time evolution (from random initial condition)

() =

S§=F =0=8"1F
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ONE KEY CHALLENGE

MATRIX INVERSION COMPLEXITY

SO=F =0=8"1'F

,
CHALLENGE: S = (CNP X Np Np : number of variational parameters
Computational complexity for inversion: O(Ng)
LIMITS CRITICALLY THE REACHABLE ANN SIZES
SOLUTION: Minimum-step stochastic Reconfiguration Chen & MH arXiv:2302.01941
Reducing the computational complexity: O(Np)
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A NEW OPTIMIZER: MINSR

NEURAL TANGENT KERNEL

Number of
samples N,

Quantum
metric

Reduced
quantum metric

Markus Hey!

Number of parameters N,,
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Variational quantum state
derivative

s = gl 0
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ANTIFERROMAGNETIC HEISENBERG MODEL

SQUARE LATTICE

H=J1) S;i-Sj+J )Y 8;-S;
(i.d) (i.3))
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HEISENBERG MODEL

APPROACHING MACHINE PRECISION
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Chen & MH arXiv:2302.01941
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J1-12 MO

FRUSTRATED POINT J2/J1=1/2

o

—0.4955

Energy per site E/N

—0.4975 1

—0.4960 1

—0.4970 1

BEL

—0.4965 - MSR limit

GWF (Lanczos2)

GS

PP+RBM

—8— CNN (MinSR)
A  Shallow CNN

j - b
*  RBM (Lanczos)
CNN (transfer) 16X16
Wave function Reference E/N

1108618, PP{RBM 7] —0.496213(3)
GCNN 9] —0.496407(7)

"""""""""""""" CNN(transfer) [29] —0.49659
L CNN(MinSR)  This work  —0.496683(2)
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DYNAMICS OF COMPLEX 2D
QUANTUM MATTER
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QUANTUM DYNAMICS

TIME-DEPENDENT VARIATIONAL PRINCIPLE

Markus Heyl

TIME-DEPENDENT VARIATIONAL PRINCIPLE

SO — iF
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QUANTUM KIBBLE-ZUREK MECHANISM

DYNAMICAL UNIVERSALITY FOR INTERACTING 2D QUANTUM MATTER

H:—.]Zafoj—hZcrj’ < h‘/] ’h/J

Well-established in 1D
What is special about 2D?

ti®

Conformal field theories
fundamentally different!

M. Schmitt, MH, et al. Science Advances '22
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UNIVERSAL DEFECT PRODUCTION

2D QUANTUM ISING MODEL
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QUANTUM WAVE FUNCTION NETWORKS

CONSTRUCTING NETWORKS FROM SNAPSHOT MEASUREMENTS

SNAPSHOTS AS DATA SETS IMPOSING STRUCTURE RESULTING NETWORKS
B
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T. Mendes-Santos, MH, et al. arXiv:2301.13216
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CROSS CERTIFICATION

COMPARING NETWORK STRUCTURES

ERES=SINGEEICRN TEST
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