Title: Ugrnd Experiments

Speakers:

Collection: TRISEP 2023

Date: June 27, 2023 - 4:30 PM

URL: https://pirsa.org/23060080

Pirsa: 23060080

2023/06/27

Underground Science

Jodi Cooley

Executive Director | SNOLAB
Professor of Physics | Queen's University
Adjunct Research Professor | SMU

Pirsa: 23060080 Page 2/56

2

World Class Science is Done in Underground Laboratories

- · Dark Matter
- Neutrino Physics
- · Double Beta Decay
- Nuclear Astrophysics
- Quantum Technology
- Rare Processes
- Geophysics
- Gravitational Waves
- · General Relativity
- Underground Biology
- Nuclear Security

•

Pirsa: 23060080 Page 3/56

Pirsa: 23060080 Page 4/56

Abundance of Evidence for particle Dark Matter Rotation Curve of Milky Way Structure Formation ➤ The Missing Mass Problem: Sofue: arXiv 1110.4431 300 ➤ Dynamics of stars, galaxies, and clusters (km/s) v ➤ Rotation curves, gravitational lensing ➤ Large Scale Structure formation Bulge Halo 100 1000 R (kpc) Cosmic Microwave Background Nature 2006 Angular scale 6000 Plank 2013 5000 $\mathcal{D}_{\ell}[\mu K^2]$ 1500 Multipole moment, ℓ

Pirsa: 23060080 Page 5/56

Abundance of Evidence for particle Dark Matter

- ➤ The Missing Mass Problem:
 - ➤ Dynamics of stars, galaxies, and clusters
 - ➤ Rotation curves, gravitational lensing
 - ➤ Large Scale Structure formation
- ➤ Wealth of evidence for a particle solution
 - ➤ Microlensing (MACHOs) mostly ruled out
 - ➤ MOND has problems with Bullet Cluster
- ➤ Non-baryonic
 - ► Height of acoustic peaks in the CMB (Ω_b , Ω_m)
 - ▶ Power spectrum of density fluctuations ($\Omega_{\rm m}$)
 - ➤ Primordial Nucleosynthesis (Ω_b)
- ➤ And STILL HERE!
 - ➤ Stable, neutral, non-relativistic
 - ➤ Interacts via gravity and (maybe) a weak force

4

Pirsa: 23060080 Page 6/56

Pirsa: 23060080 Page 7/56

Content

- ➤ How to Design a Dark Matter Detector
 - ➤ Expected rates
 - ➤ Background considerations
 - ➤ Experimental signatures
- ➤ Direct Detection Searches
 - ➤ Have we already seen a signal?
 - ➤ Detecting scattering from the nucleus with existing experiments
 - ➤ Reaching lower masses by detecting single electron-hole pairs with current experiments
 - ➤ Ideas for extending sensitivity to sub-eV dark matter signatures.

Content

- How to Design a Dark Matter Detector

- Experiend state

- Endogrand consoluterations

- Endogrand consoluterations

- Endogrand consoluterations

- How to Detection Seathers

- Home or Enterthy was a signal?

- Detecting scattering from the modern with existing experiments

- Endogrand invert master by directing neight effection hole pairs with current experiments

- Mean for consoling sensitivity on sub-6V dark matter signatures.

- In the consoling sensitivity on while V dark matter signatures.

C

Pirsa: 23060080 Page 8/56

Pirsa: 23060080 Page 9/56

Pirsa: 23060080 Page 10/56

Direct Detection Event Rates

Assume that the dark matter is not only gravitationally interacting (WIMP).

9

Pirsa: 23060080 Page 11/56

Direct Detection Event Rates

Assume that the dark matter is not only gravitationally interacting (WIMP).

- ➤ Elastic scatter of a WIMP off a nucleus
 - ➤ Imparts a small amount of energy in a recoiling nucleus
 - ➤ Can occur via spin-dependent or spin-independent channels
 - ➤ Need to distinguish this event from the overwhelming number of background events

Pirsa: 23060080 Page 12/56

Kinematics

➤ Calculate the recoil energy of a nucleus in the center of mass frame.

initial momentum:
$$\vec{p} = -\overrightarrow{E_k}$$

final momentum: $\vec{p}' = -\overrightarrow{E_k}' = \vec{q} + \mu \vec{v}_\chi$

where

WIMP-nucleus reduced mass:
$$\mu = \frac{m_\chi m_N}{m_\chi + m_N}$$

 $q = momentum \ transfer$

➤ For elastic scattering in the COM frame: $|\vec{p}| = |\vec{p'}|$

$$\frac{q^2}{2} = \frac{1}{2}(\vec{p} - \vec{p}')^2 = p^2 - \vec{p} \cdot \vec{p}' = p^2(1 - \cos\theta)$$

➤ The NR energy can then be calculated as

$$E_r = \frac{|\vec{q}|^2}{2m_N} = \frac{\mu^2 v^2}{m_N} (1 - \cos \theta_R)$$

10

Kinematics

$$E_R = \frac{\mu^2 v^2}{m_N} (1 - \cos \theta_R)$$

$$E_r = \frac{|\vec{q}|^2}{2m_N}$$

$$E_R = \frac{\mu^2 v^2}{m_N} (1 - (-1))$$
 $\Rightarrow v_{min} = \sqrt{\frac{m_N E_R}{2\mu^2}} = \frac{q}{2\mu}$

- ➤ Implications:
 - ightharpoonup Lighter dark matter particles ($m_{\gamma} \ll m_N$) must have larger threshold velocities.
 - ➤ Inelastic scattering can further increase the minimal velocity needed.
- ➤ Consider the average momentum transfer in an elastic scattering between a WIMP-nucleus. Consider the case of a 10 GeV/ c^2 WIMP whose speed is ~ 100 km s⁻¹.

$$p = m_{\chi} v = (10 \times 10^8 \text{ eV c}^{-2})(100 \times 10^3 \text{ m s}^{-1}) \frac{c}{3 \times 10^8 \text{ m s}^{-1}} \sim 3 \text{ MeV/c}$$

If the DM were 100 GeV/ c^2 then our momentum transfer would be \sim 30 MeV/c

➤ What is the de Broglie wavelength that corresponds to a momentum transfer of ~10 MeV/c?

$$\lambda = \frac{hc}{pc} = \frac{1.239 \times 10^{-6} \text{ eV} \cdot \text{m}}{10 \times 10^{6} \text{ eV}} \sim 12 \text{ pm} > R_0 A^{1/3} \text{ fm}$$

This is larger than the size of most nuclei. Thus, scattering amplitudes on individual nucleons will add coherently.

SNOLAB

Pirsa: 23060080 Page 15/56

Expected Rates in a Detector - Simplified.

➤ The differential event rate for simplified WIMP interaction (a detector stationary in the galaxy) is given by:

13

Pirsa: 23060080

Expected Rates in a Detector - Simplified.

➤ The differential event rate for simplified the galaxy) is given by:

➤ The total event rate is given by

$$\int_0^\infty \frac{dR}{dE_R} dE_R = R_0$$

and the mean recoiling energy

$$< E_R > = \int_0^\infty E_R \frac{dR}{dE_R} dE_R = E_0 r$$
 13

Example: Calculate the Mean NR Deposited in a Detector

➤ Assume that the DM mass and the nucleus mass are identical:

$$m_{\chi} = m_N = 100 \text{ GeV/c}^2$$

➤ Our formula is

$$< E_R > = E_0 r = \left(\frac{1}{2}m_{\chi}v^2\right) \left(\frac{4m_{\chi}m_N}{(m_{\chi} + m_N)^2}\right)$$

➤ Assuming the halo is stationary, the mean WIMP velocity relative to the target is

$$v \approx 220 \text{ km s}^{-1} = 0.75 \times 10^{-3} \text{ c}$$

 \triangleright Substituting into our equation for $\langle E_R \rangle$

$$\langle E_R \rangle = \frac{100 \text{ GeV } c^{-2} (0.75 \times 10^{-3} \text{ c})^2}{2} \sim 30 \text{ keV}$$

14

Substituting that our equation for or Classification of the Class

Expected Detector Rates: The Details

- ➤ We need to take into account the following
 - ▶ DM will have a certain velocity distribution f(v).
 - ➤ The detector is on Earth, Earth moves around the Sun, and the Sun moves around the Galactic Center.
 - ➤ The cross-section depends upon the spin interaction. In the simplest cases, this is either spin-independent (SI) or spin-dependent (SD)
 - ➤ DM scatters on nuclei. Nuclei have finite size. As such, we have to consider form-factor corrections which are different for SI and SD interactions.
 - ➤ The recoil energy is not necessarily the observed energy. The detection efficiency in real life is not 100%.

15

Pirsa: 23060080 Page 19/56

Expected Detector Rates: The Details

- ➤ We need to take into account the following
 - ▶ DM will have a certain velocity distribution f(v).
 - ➤ The detector is on Earth, Earth moves around the Sun, and the Sun moves around the Galactic Center.
 - ➤ The cross-section depends upon the spin interaction. In the simplest cases, this is either spin-independent (SI) or spin-dependent (SD)
 - ➤ DM scatters on nuclei. Nuclei have finite size. As such, we have to consider form-factor corrections which are different for SI and SD interactions.
 - ➤ The recoil energy is not necessarily the observed energy. The detection efficiency in real life is not 100%.
 - ➤ Detectors have certain energy resolution and energy thresholds.

Pirsa: 23060080

15

Dark Matter Detection Master Formula

➤ The total number of particles detected (*N*) is the dark matter flux times the effective area of the target multiplied by the observation time (*t*)

number of target x scattering cross section

$$N = tnvN_T \sigma$$

DM number density x DM speed

➤ We will need to determine the spectrum of DM recoils → the energy dependence of the number of detected DM particles

$$\frac{dN}{dE_R} = tnvN_T \frac{d\sigma}{dE_R}$$

Dark Matter Detection Master Formula

• The roal number of practice detected QO is the dark matter that times the effective area of the target multiplied by the observation time (0) make of target a number of target and the target and target and the number of the number of offers and the special of the number of offers and IM partials

Grant ** Special

**Gran

16

 \triangleright We need to consider the DM particles are described by their local velocity distribution, $f(\vec{v})$, were \vec{v} is the DM velocity in the reference frame of the detector.

$$\frac{dN}{dE_R} = tnN_T \int_{v_{min}} vf(\vec{v}) \frac{d\sigma}{dE_R} d\vec{v}$$

➤ Noting the following:

$$n=rac{
ho}{m_\chi}$$
 and $N_T=rac{M_T}{m_N}$ and $\epsilon=tM_T$ where M_T is the total mass of the target

We need to integrate all possible DM velocities with their corresponding probability density and

$$v_{min} = \sqrt{rac{m_{\chi} E_R}{2\mu^2}} = egin{array}{c} min \ speed \ required \ to \ produce \ a \ recoil \ of \ energy \ E_R. \end{array}$$

and m_N is the mass of an individual nucleus

$$\frac{dN}{dE_R} = tnvN_T \frac{d\sigma}{dE_R}$$

➤ We need to consider the DM particles are described by their local velocity distribution, $f(\vec{v})$, were \vec{v} is the DM velocity in the reference frame of the detector.

$$\frac{dN}{dE_R} = tnN_T \int_{v_{min}} vf(\vec{v}) \frac{d\sigma}{dE_R} d\vec{v}$$

➤ Noting the following:

$$n = \frac{\rho}{m_{\chi}}$$
 and $N_T = \frac{M_T}{m_N}$ and $\epsilon = tM_T$

➤ We can write

$$\frac{dN}{dE_R} = \epsilon \frac{\rho}{m_{\chi} m_N} \int_{\nu_{min}} \nu f(\vec{v}) \frac{d\sigma}{dE_R} d\vec{v}$$

We need to integrate all possible DM velocities with their corresponding probability density and

$$v_{min} = \sqrt{rac{m_{\chi} E_R}{2\mu^2}} = egin{array}{c} min \ speed \ required \ to \ produce \ a \ recoil \ of \ energy \ E_R. \end{array}$$

where M_T is the total mass of the target and m_N is the mass of an individual nucleus

Elements of Ideal Event Rate in Direct Detection:

Differential Event Rate:

[events/keV/kg/day]

Elastic scattering happens in the extreme non-relativistic case in the lab frame.

need input from astrophysics, particle physics and nuclear physics

Minimum WIMP velocity which can cause a recoil of energy E_R .

$$v_{min} = \sqrt{\frac{m_N E_I}{2\mu^2}}$$

$$E_R = \frac{\mu_N^2 v^2 (1 - \cos \theta_R)}{m_N}$$

where
$$\mu = \frac{m_\chi m_N}{m_\chi + m_N}$$
 and $\theta_R =$ scattering angle

18

Elements of Ideal Event Rate in Direct Detection:

Differential Event Rate:

[events/keV/kg/day]

Elastic scattering happens in the extreme non-relativistic case in the lab frame.

need input from astrophysics, particle physics and nuclear physics

Minimum WIMP velocity which can cause a recoil of energy E_R .

$$v_{min} = \sqrt{\frac{m_N E_1}{2\mu^2}}$$

$$E_R = \frac{\mu_N^2 v^2 (1 - \cos \theta_R)}{m_N}$$

where
$$\mu = \frac{m_\chi m_N}{m_\chi + m_N}$$
 and $\theta_R =$ scattering angle

19

The Scattering Cross Section

➤ Event rate is found by integrating over all recoils:

$$R = \int_{E_T}^{\infty} dE_R \frac{\rho_0}{m_N m_{\chi}} \int_{v_{min}}^{\infty} v f(v) \frac{d\sigma_{\chi N}}{dE_R} (v, E_R) dv$$
threshold energy

Minimum WIMP velocity which can cause a recoil of energy E_R .

$$v_{min} = \sqrt{\frac{m_N E_I}{2\mu^2}}$$

20

Pirsa: 23060080 Page 26/56

The Scattering Cross Section

➤ Event rate is found by integrating over all recoils:

$$R = \int_{E_T}^{\infty} dE_R \frac{\rho_0}{m_N m_{\chi}} \int_{v_{min}}^{\infty} v f(v) \frac{d\sigma_{\chi N}}{dE_R}(v, E_R) dv$$
threshold energy

Minimum WIMP velocity which can cause a recoil of energy E_R .

$$v_{min} = \sqrt{\frac{m_N E_R}{2\mu^2}}$$

➤ The scattering cross section takes place in the non-relativistic limit. Thus, it can be approximated as isotropic.

$$\frac{d\sigma}{d\cos\theta} = constant = \frac{\sigma}{2}$$

20

► Recall, $E_R^{max} = 2\mu^2 v^2/m_N$. That means we can write ...

$$\frac{d\sigma}{d\cos\theta} = \frac{\sigma}{2}$$

$$E_R = E_R^{max} \frac{1 + \cos \theta}{2} \longrightarrow \frac{dE_R}{d\cos \theta} = \frac{E_R^{max}}{2}$$

> From this we can write

$$\frac{d\sigma}{dE_R} = \frac{d\sigma}{d\cos\theta} \frac{d\cos\theta}{dE_R} = \frac{\sigma}{2} \frac{2}{E_R^{max}} = \frac{\sigma}{E_R^{max}} = \frac{m_N}{2\mu} \frac{\sigma}{v^2}$$

➤ Recall that the momentum transfer for non-relativistic processes can neglect the kinetic energy of the nucleus. So,...

$$q = \sqrt{2m_N E_R} \sim MeV$$
 \rightarrow the de Broglie length is on the order of fm.

➤ So, light nuclei, the DM particle sees the nucleus as a whole, w/o substructure.

- ➤ Heavier nuclei require inclusion of the nuclear form factor to account for the loss of coherence.
- ➤ The WIMP-nucleon cross section can be separated:

$$\frac{d\sigma}{dE_R} = \left[\left(\frac{d\sigma}{dE_R} \right)_{SI} + \left(\frac{d\sigma}{dE_R} \right)_{SD} \right]$$

Spin-Independent + Spin-Dependent

SI arise from scalar or vector couplings to quarks.

SD arise from axial-vector couplings to quarks.

➤ To calculate, add coherently the spin and scalar components

$$\frac{d\sigma}{dE_R} = \frac{m_N}{2\mu_N^2 v^2} \left[\sigma_0^{SI} F_{SI}^2 + \sigma_0^{SD} F_{SD}^2 \right]$$
Particle Nuclear
Theory Structure

 $F(E_R) = Form factor encodes the dependence on the momentum transfer.$

$$\frac{d\sigma_{\chi N}}{dE_R} = \frac{m_N}{2\mu_N^2 v^2} \left[\sigma_0^{SI} F_{SI}^2 + \sigma_0^{SD} F_{SD}^2 \right]$$

➤ Spin Independent: Woods-Saxon Form Factor

$$F(q) = \left(\frac{3j_1(qR_1)}{qR_1}\right)^2 e^{-q^2s^2/2}$$

$$j_1 = spherical Bessel Function = \frac{\sin(x)}{x^2} - \frac{\cos(x)}{x}$$

q = momentum transfer

 $s = nuclear skin thickness (\simeq 1 fm)$

 $R_1 = effective nucleus radius$

$$\frac{d\sigma_{WN}}{dE_R} = \frac{m_N}{2\mu_N^2 v^2} \left[\sigma_0^{SI} F_{SI}^2 + \sigma_0^{SD} F_{SD}^2 \right]$$

➤ Spin Dependent Interactions

$$F^{2}(E_{R}) = \frac{S(E_{R})}{S(0)}$$

$$S(E_{R}) = a_{0}^{2}S_{00}(E_{R}) + a_{1}^{2}S_{11}(E_{R}) + a_{0}a_{1}2S_{01}(E_{R})$$

$$a_{0} = a_{p} + a_{n} \text{ and } a_{1} = a_{p} - a_{n}$$

$$S_{ij} \longrightarrow isoscalar, isovector and interference$$

$$form factors$$

$$a_{i,j} \longrightarrow isoscalar, isovector coupling$$

$$\sigma_0^{SI} = \frac{4\mu^2}{\pi} \left[Z f_p + (A - Z) f_n \right]^2 \propto A^2$$
coupling to
proton
coupling to
neutron

Assume low momentum transfer:

- ➤ In most models $f_n \sim f_p$ (scalar fourfermion coupling constants)
 - ➤ Scattering adds coherently with A² enhancement

> Spin-Dependent

Pirsa: 23060080 Page 32/56

$$\frac{d\sigma_{WN}}{dE_R} = \frac{m_N}{2\mu_N^2 v^2} \left[\sigma_0^{SI} F_{SI}^2 + \sigma_0^{SD} F_{SD}^2 \right]$$

> Spin-Independent

$$\sigma_0^{SI} = \frac{4\mu^2}{\pi} \left[Zf_p + (A - Z)f_n \right]^2 \propto A^2$$
coupling to
proton
coupling to
neutron

Assume low momentum transfer:

- ➤ In most models $f_n \sim f_p$ (scalar fourfermion coupling constants)
 - ➤ Scattering adds coherently with A² enhancement

> Spin-Dependent

- ➤ Scales with spin of the nucleus
 - ➤ No coherent effect!

	$4\langle S_p \rangle^2 (J+1)$	$\frac{4\langle S_n\rangle^2(J+1)}{4\langle S_n\rangle^2(J+1)}$
٦		0.7

Nucleus	Z	Odd Nucleon	J	$\langle S_p \rangle$	$\langle S_n \rangle$	3J	3J
^{19}F	9	р	1/2	0.477	-0.004	9.10×10^{-1}	6.40×10^{-5}
23 Na	11	р	3/2	0.248	0.020	1.37×10^{-1}	8.89×10^{-4}
²⁷ Al	13	p	5/2	-0.343	0.030	2.20×10^{-1}	1.68×10^{-3}
²⁹ Si	14	n	1/2	-0.002	0.130	1.60×10^{-5}	6.76×10^{-2}
³⁵ Cl	17	p	3/2	-0.083	0.004	1.53×10^{-2}	3.56×10^{-5}
$^{39}\mathrm{K}$	19	p	3/2	-0.180	0.050	7.20×10^{-2}	5.56×10^{-3}
⁷³ Ge	32	n	9/2	0.030	0.378	1.47×10^{-3}	2.33×10^{-1}
$^{93}\mathrm{Nb}$	41	р	9/2	0.460	0.080	3.45×10^{-1}	1.04×10^{-2}
¹²⁵ Te	52	n	1/2	0.001	0.287	4.00×10^{-6}	3.29×10^{-1}
^{127}I	53	p	5/2	0.309	0.075	1.78×10^{-1}	1.05×10^{-2}
¹²⁹ Xe	54	n	1/2	0.028	0.359	3.14×10^{-3}	5.16×10^{-1}
¹³¹ Xe	54	n	3/2	-0.009	-0.227	1.80×10^{-4}	1.15×10^{-1}

Tovey et al., PLB 488 17(2000)

"Scaling Factors"

Pirsa: 23060080 Page 34/56

Relic WIMP Distribution: Simplified Model

➤ WIMPs are distributed in isothermal spherical halos with Gaussian velocity distribution (Maxwellian)

$$f(\vec{v}) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{|\vec{v}|^2}{2\sigma^2}}$$

The speed dispersion is related to the local circular speed by $\sqrt{3}$

 $\sigma = \sqrt{\frac{3}{2}}v_c \quad \text{where} \quad v_c = 220 \text{ km/s}$

➤ The density profile of the sphere is

$$\rho(r) \propto r^{-2}$$
 and $\rho_0 = 0.3 \text{ GeV/c}^2$

 \blacktriangleright Particles with speeds greater than v_{esc} are not gravitationally bound. Hence, the speed distribution needs to be truncated.

$$v_{esc} = 650 \text{ km/s}$$

➤ How many dark matter particles in a 2 liter bottle?

recall that 1 liter = 0.001 m^3

120 particles \longrightarrow for 5 GeV/ c^2

10 particles \longrightarrow for 60 GeV/ c^2

Density of WIMPs in Your Work area

➤ The local dark matter density is

$$\rho_0 = 0.3 \; GeV/cm^3$$

➤ Pick your favored mass for the dark matter particle

$$m = 5 \text{ GeV/c}^2$$

$$m = 60 \text{ GeV/c}^2$$

➤ What is the number density?

$$60,000 particles/m^3$$

$$\longrightarrow$$
 for 5 GeV/c²

$$5,000 \ particles/m^3 \longrightarrow for 60 \ GeV/c^2$$

$$\longrightarrow$$
 for 60 GeV/c²

Maybe Not that Simple?

- ➤ Effective Field Theory considers leading order and NLO operators that can occur in the effective Lagrangian that describes the WIMP-nucleon interactions.
- ➤ Contains 14 operators, that rely on a range of nuclear properties in addition to the SI and SD cases. They combine such that the WIMP-nucleon cross section depends on six independent nuclear response functions:
 - ➤ One "Spin independent"
 - ➤ Two "Spin Dependent"
 - ➤ Three "Velocity-Dependent"
- > Two pairs of these interfere, resulting in eight independent parameters that can be probed

The effective field theory of dark matter direct detection

A. Liam Fitzpatrick, a Wick Haxton, b Emanuel Katz, a,c,d Nicholas Lubbers, c Yiming Xu c

http://arxiv.org/abs/1211.2818 http://arxiv.org/abs/1308.6288 http://arxiv.org/abs/1405.6690

http://arxiv.org/abs/1503.03379

29

Pirsa: 23060080 Page 37/56

$$\begin{split} \mathcal{O}_{1} &= 1_{\chi} 1_{N} \\ \mathcal{O}_{3} &= i \vec{S}_{N} \cdot \left[\frac{\vec{q}}{m_{N}} \times \vec{v}^{\perp} \right] \\ \mathcal{O}_{4} &= \vec{S}_{\chi} \cdot \vec{S}_{N} \\ \mathcal{O}_{5} &= i \vec{S}_{\chi} \cdot \left[\frac{\vec{q}}{m_{N}} \times \vec{v}^{\perp} \right] \\ \mathcal{O}_{6} &= \left[\vec{S}_{\chi} \cdot \frac{\vec{q}}{m_{N}} \right] \left[\vec{S}_{N} \cdot \frac{\vec{q}}{m_{N}} \right] \\ \mathcal{O}_{7} &= \vec{S}_{N} \cdot \vec{v}^{\perp} \\ \mathcal{O}_{8} &= \vec{S}_{\chi} \cdot \vec{v}^{\perp} \\ \mathcal{O}_{9} &= i \vec{S}_{\chi} \cdot \left[\vec{S}_{N} \times \frac{\vec{q}}{m_{N}} \right] \\ \mathcal{O}_{10} &= i \vec{S}_{N} \cdot \frac{\vec{q}}{m_{N}} \\ \mathcal{O}_{11} &= i \vec{S}_{\chi} \cdot \frac{\vec{q}}{m_{N}} \\ \mathcal{O}_{12} &= \vec{S}_{\chi} \cdot \left[\vec{S}_{N} \times \vec{v}^{\perp} \right] \\ \mathcal{O}_{13} &= i \left[\vec{S}_{\chi} \cdot \frac{\vec{q}}{m_{N}} \right] \left[\vec{S}_{N} \cdot \frac{\vec{q}}{m_{N}} \right] \\ \mathcal{O}_{14} &= i \left[\vec{S}_{\chi} \cdot \frac{\vec{q}}{m_{N}} \right] \left[\vec{S}_{N} \cdot \vec{v}^{\perp} \right] \\ \mathcal{O}_{15} &= - \left[\vec{S}_{\chi} \cdot \frac{\vec{q}}{m_{N}} \right] \left[\left(\vec{S}_{N} \times \vec{v}^{\perp} \right) \cdot \frac{\vec{q}}{m_{N}} \right] \end{aligned}$$

➤ The EFT framework parameterizes the WIMPnucleus interaction in terms of the 14 operators listed to the left.

 $ec{v}^{\perp}=$ relative velocity between incoming WIMP and nucleon q= momentum transfer $ec{S}_{\chi}=$ WIMP spin $ec{S}_{N}=$ nucleon spin

➤ In addition, each operator can independently couple to protons or neutrons.

Note \mathcal{O}_2 is not considered as it cannot arise from the non-relativistic limit.

F constructive interference F constructive interference Ge Xe F Nuclear recoil energy [keV]

Dark Matter Could Look Different in Different Targets

- ➤ Nuclear responses for different target elements vary. Some EFT operations have momentum dependance. EFT Operators can interfere.
 - ➤ Example illustrates differences evaluating at the \mathcal{O}_8 and \mathcal{O}_9 constructive interference vector.
 - ➤ Results in different rates between targets AND different spectral shapes.
- ➤ A robust dark matter direct detection program with different target materials will be needed to nail down which operators are contributing to any detected signal
- ➤ Take home message: We will need multiple targets to map out the physics of WIMP-nucleon interactions!

arxiv: 1503.03379

EVent Rates are Extremely Low!

- ➤ Elastic scattering of WIMP deposits small amounts of energy into a recoilir nucleus (~few 10s of keV)
- ➤ Featureless exponential spectrum with no obvious peak, knee, break ...
- ➤ Event rate is very, very low.
- ➤ Radioactive background of most materials is higher than the event rate.

Need large exposures (mass x time)!

EVent Rates are Extremely Low!

• Elasts scarcing of WIMP deposits small amounts of energy into a receills inclean (-feet file of left)

• Fortunaless exponential spectrum with no obscum peak knot, break ...

• Deem care is very very lose

• Radisactive background of most merends in higher than the event rate.

Need large exposures (mass x time)/

32

Pirsa: 23060080 Page 40/56

Total Rate for different thresholds in Ge, $\sigma=1.\times10^{-42} \text{cm}^2$ Same Target (Ge) Different WIMP Masses 10 20 100 Same Target (Ge) Different WIMP Masses 10 Experimental Threshold [keV] Total Rate for different thresholds, $m\chi=5~\text{GeV/}c^2$, $\sigma=1.\times10^{-42} \text{cm}^2$

The Low-Mass WIMP Challenge

$$E_R = \frac{p^2}{2m_N} = \frac{m_\mu^2 v^2}{m_N} (1 - \cos \theta_R)$$

A WIMP must have a minimum velocity to produce a recoil.

Need Low Energy Threshold!

EVent Rates are Extremely Low!

- ➤ Elastic scattering of WIMP deposits small amounts of energy into a recoilir nucleus (~few 10s of keV)
- ➤ Featureless exponential spectrum with no obvious peak, knee, break ...
- ➤ Event rate is very, very low.
- ➤ Radioactive background of most materials is higher than the event rate.

EVent Rates are Extremely Low!

- Elastic scattering of WIMP deposits small amounts of energy into a reculir solution. (Ame to Mor of MV)

- Frantactics exponential spectrum with no obvious pask, kine, break.

- Dent rate is very, very low

- Madissistive hackground of most materials is higher than the event cate.

32

Pirsa: 23060080 Page 42/56

EVent Rates are Extremely Low!

- ➤ Elastic scattering of WIMP deposits small amounts of energy into a recoilir nucleus (~few 10s of keV)
- ➤ Featureless exponential spectrum with no obvious peak, knee, break ...
- ➤ Event rate is very, very low.
- ➤ Radioactive background of most materials is higher than the event rate.

Need large exposures (mass x time)!

EVent Rates are Extremely Low!

SIGNAS

Hastic containing of WIMP deposits small amounts of energy into a recoils media mounts of energy into a recoils median (—few 10 to fave).

Fratterless appointed a spectrum with no obstone yeak, knot, break.

Froze area is very very loss

Hadinactive hackground of most instruction is higher than the event rate.

Need large exposures (mass x time)!

32

Pirsa: 23060080 Page 43/56

Total Rate for different thresholds in Ge, $\sigma=1.\times10^{-42} \text{cm}^2$ Same Target (Ge) Different WIMP Masses Different WIMP Masses Total Rate for different threshold [keV] Total Rate for different thresholds, $m\chi=5$ GeV/ c^2 , $\sigma=1.\times10^{-42} \text{cm}^2$

The Low-Mass WIMP Challenge

$$E_R = \frac{p^2}{2m_N} = \frac{m_\mu^2 v^2}{m_N} (1 - \cos \theta_R)$$

A WIMP must have a minimum velocity to produce a recoil.

Need Low Energy Threshold!

The Event Rates Are Extremely Low!

➤ Expected WIMP Spectrum

➤ Measured Banana Spectrum

Gamma measurements with a 3-inch

NaI detector

34

Pirsa: 23060080 Page 45/56

The Event Rates Are Extremely Low!

35

➤ Expected WIMP Spectrum

~1 event per kg per year

(nuclear recoils)

➤ Measured Banana Spectrum

~100 events per kg per year

(electron recoils)

Pirsa: 23060080 Page 46/56

Pirsa: 23060080 Page 47/56

V₀~220km/s Cygnus Go Quality Sun Sun Sun Poly Sun Poly Sun December

Time Dependence

Time Dependence

- ➤ The Earth's orbit around the Sun leads to a time dependence (annual modulation) in the differential rate.
 - ➤ Earth's speed wrt the galactic rest frame is largest in the summer when the components of Earth's orbital velocity in the direction of solar motion is largest.
 - ➤ The number of WIMPs with his (low) speeds in the detector rest frame is largest (smallest) in summer.
 - ➤ As a result, we expect the differential rate to have an annual modulation with a peak in the summer and minimum in the winter.

Pirsa: 23060080

PHYSICAL REVIEW D

EW D VOLUME 33.

15 JUNE 1986

etecting cold dark-matter candidates

Andrzej K. Drukier

Max-Planck-Institut für Physik und skrophysik, 8046 Garching, West Germany
and Department of Astronomy, Harvard-Smithsonian Center for Astrophysics,
60 Garden Street, Cambridge, Massachusetts 02138

Katherine Freese and David N. Spergel
Department of Astronomy, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street,
Cambridge, Massachusetts 02138

ightharpoonup Earth's orbital speed is much smaller than Sun's circular speed ($\frac{v_{orb}}{v_c} \simeq 0.07$). We can Taylor expand the differential rate to a first approximation.

$$\frac{dR}{dE_R}(E_R, t) \approx \frac{dR}{dE_R} \left[1 + \Delta(E_R) \cos \frac{2\pi(t - t_0)}{T} \right]$$

Time Dependence of the Signal

Taking T = 1 year and $t_0 = 150$ days, the differential event rate peaks in Dec for small recoil energies and in the summer for large recoil energies.

Pirsa: 23060080 Page 49/56

Signal Modulation: Directional Dependence

- ➤ The Earth's motion wrt the Galactic rest frame produces a direction dependence of the recoil spectrum.
- ➤ The peak WIMP flux comes from the direction of solar motion, points towards Cygnus.
- ➤ Assuming a smooth WIMP distribution, the recoil rate is peaked in the opposite direction.
- ➤ In the lab frame, this direction varies over the course of a day due to Earth's rotation.

Pirsa: 23060080

39

PHYSICAL REVIEW D
PARTICLES AND FIELDS

THIRD SERIES, VOLUME 37, NUMBER 6

15 MARCH

Motion of the Earth and the detection of weakly interactine massive na-

David N. Spergel*
Institute for Advanced Study, Princeton, New Jersey 08540
(Received 21 September 1987)

- ➤ The number of NR along a particular direction in the lab frame will change over the course of a day.
- ➤ Assuming a Standard Halo model, the dependence is given by

$$\frac{dR}{dE_R \cos \gamma} = \frac{\rho_0 \sigma_{WN}}{\sqrt{\pi} \sigma_v} \frac{m_N}{2m_W m \mu^2} exp \left[-\frac{\left[(v_{orb}^E + v_c) \cos \gamma - v_{min} \right]^2}{\sigma_v^2} \right]$$

where $v_{orb}^{E} = Earth$'s velocity parallel to direction solar motion

 $\gamma =$ angle between recoil and direction of solar motion

➤ A detector measuring the axis and direction of the recoil with good angular resolution needs only a few tens of events to distinguish DM from isotropic background.

Pirsa: 23060080

Pirsa: 23060080 Page 52/56

Background Sources

- ➤ Environmental radioactivity
 - ➤ includes airborne radon and it's daughters
- ➤ Radio-impurities in materials used for the detector construction and shield
- ➤ Radiogenic neutrons with energies below 10 MeV
 - \triangleright Neutrons from (α,n) and fission reactions
- ➤ Cosmic rays and their secondaries
- ➤ Activation of detector materials near Earth's surface

42

Pirsa: 23060080 Page 53/56

Background Sources

- ➤ Environmental radioactivity
 - ➤ includes airborne radon and it's daughters
- > Radio-impurities in materials used for the detector construction and shield
- ➤ Radiogenic neutrons with energies below 10 MeV
 - \triangleright Neutrons from (α,n) and fission reactions
- ➤ Cosmic rays and their secondaries
- ➤ Activation of detector materials near Earth's surface
- ➤ Others that we have not yet identified?

42

Pirsa: 23060080 Page 54/56

Aside: Reminder of Radioactive Decay

➤ Activity [decays/time] is a measure of the decay rate of a radionuclide.

$$A = \frac{dN}{dt} = \lambda N$$
 $\lambda = decay \ constant$ $N = total \ number \ of \ radioactive \ atoms$

➤ The decay constant is the probability that a radioactive atom will decay.

$$\lambda = \frac{\ln 2}{t_{1/2}}$$

➤ The number of atoms of the radioisotope present is given by

$$N = \frac{Avogadro's \ Number}{atomic \ mass \ of \ the \ radionuclide} \times mass \ of \ the \ radionuclide$$

➤ Abundance refers to the relative portions of stable isotopes of an element.

vent Signatures

Event Signatures

The most problematic backgrounds are interactions from neutrons that result from (α,n) and fission reactions from 238 U and 232 Th decays in detector components and in close vicinity of target materials. NUCLEAR Recoils (NR)

Electron Recoils (ER)

Gamma: Most prevalent background

Beta: on surface or in bulk

Neutron: NOT distinguishable from WIMP

Alpha: almost always a surface event

Recoiling Parent Nucleus: surface event

