Title: The min-entropy of classical quantum combs and some applications
Speakers: Isaac Smith
Series: Quantum Foundations
Date: June 08, 2023-11:00 AM
URL: https://pirsa.org/23060052
Abstract: It is often the case that interaction with a quantum system does not simply occur between an initial point in time and a final one, but rather over many time steps. In such cases, an interaction at a given time step can have an influence on the dynamics of the system at a much later time. Just as quantum channels model dynamics between two time steps, quantum combs model the more general multi-time dynamics described above, and have accordingly found application in such fields as open quantum systems and quantum cryptography. In this talk, we will consider ensembles of combs indexed by a random variable, dubbed classical-quantum combs, and discuss how much can be learnt about said variable through interacting with the system. We characterise the amount of information gain using the comb min-entropy, an extension of the analogous entropic quantity for quantum states. With combs and the min-entropy in our toolbox, we turn to a number of applications largely inspired by Measurement-Based Quantum Computing (MBQC), including the security analysis of a specific Blind Quantum Computing protocol and some comments regarding learning causal structure.

Zoom Link: https://pitp.zoom.us/j/98315660866?pwd=cWU3RzB6SG9DOGIza1BqV11qNklvQT09

The min-entropy of classical-quantum combs and some applications

Isaac Smith, 08.06.23, Perimeter Institute

$$
H_{\min }(A \mid B)_{\rho_{A B}}:=-\log _{2} \max _{\mathcal{E}} \operatorname{Tr}\left[|\Phi\rangle\langle\Phi|\left(I_{A} \otimes \mathcal{E}\right) \rho_{A B}\right]
$$

König, R., et al; IEEE Transactions on Information theory 55, no. 9 (2009): 4337-4347.

$$
\rho_{X B}=\sum_{x} p_{x}|x\rangle\langle x| \otimes \rho_{B}^{x}
$$

$$
\max _{\left\{E_{x^{\prime}} x_{x^{\prime}}\right.} \sum_{x, x^{\prime}} p_{x} \delta_{x, x^{\prime}} \operatorname{Tr}\left[E_{x^{\prime}} \rho_{B}^{x}\right]
$$

$$
\max _{\left\{E_{x^{\prime}}\right\}_{x^{\prime}}} \sum_{x, x^{\prime}} p_{x} \delta_{x, x^{\prime}} \underbrace{\operatorname{Tr}\left[E_{x^{\prime}} \rho_{B}^{x}\right]}_{p_{x^{\prime} \mid x}}
$$

"How distinguishable are the ρ_{B}^{x} "

Harrow, AW. et al. PRA 81, no. 3 (2010): 032339

$$
\max _{\rho_{A R}, \mathcal{E},\left\{E_{x^{\prime}}\right\}} \sum_{x} p_{x} \delta_{x, x^{\prime}} \operatorname{Tr}\left[E_{x^{\prime}}\left(\mathcal{F}_{x} \otimes R^{\prime}\right) \circ \mathcal{E} \circ\left(\mathcal{F}_{x} \otimes I_{R}\right)\left(\rho_{A R}\right)\right]
$$

Harrow, AW. et al. PRA 81, no. 3 (2010): 032339

$$
\mathcal{C}:=\sum_{x} p_{x}|x\rangle\langle x| \otimes \sigma_{x}
$$

$$
\max _{\mathcal{D}} \mathcal{C} * \mathcal{D}
$$

$$
H_{\min }\left(t_{n}, t_{n-1} \mid t_{0}, \ldots, t_{n-2}\right)_{\mathcal{C}}=-\log (\underbrace{\max _{\mathcal{D}} \mathcal{C} * \mathcal{D}}_{\text {Strong Dualixf }})
$$

$H_{\min }\left(t_{n}, t_{n-1} \mid t_{0}, \ldots, t_{n-2}\right)_{\mathcal{C}}=-\log \min _{\Gamma} \min \left\{\lambda: \mathcal{C} \leq \lambda \Gamma \otimes I_{t_{n-1, n}}\right\}$

$$
H_{\min }\left(t_{n}, t_{n-1} \mid t_{0}, \ldots, t_{n-2}\right)_{\mathcal{C}}=-\log (\underbrace{\max _{\mathcal{D}} \mathcal{C} * \mathcal{D}}_{\text {Strong Duadity }})
$$

$H_{\min }\left(t_{n}, t_{n-1} \mid t_{0}, \ldots, t_{n-2}\right)_{\mathcal{C}}=-\log \min _{\Gamma} \min \left\{\lambda: \mathcal{C} \leq \lambda \Gamma \otimes I_{t_{n-1, n}}\right\}$

$$
\mathcal{C}:=\sum_{x} p_{x}|x\rangle\langle x| \otimes \sigma_{x}
$$

$H_{\min }\left(X \mid \sigma_{x}\right)_{\mathcal{C}}$

We can hypothesis test structure.

MBQC in one slide

MBQC consists of:

Entanglement

$|G\rangle$

Measurements $\quad\left|+{ }_{\alpha}\right\rangle\left\langle+{ }_{\alpha}\right| \quad\left|-{ }_{\alpha}\right\rangle\left\langle-{ }_{\alpha}\right|$

MBQC in one slide

MBQC consists of:

Entanglement	$\|G\rangle$	
Measurements	$\left\|+{ }_{\alpha}\right\rangle\left\langle+{ }_{\alpha}\right\|$	$\left\|-{ }_{\alpha}\right\rangle\left\langle-{ }_{\alpha}\right\|$
	\Downarrow	\Downarrow
Corrections	No	Yes

First example and an aside: Routed Circuits

$$
\begin{aligned}
& \left|+_{\alpha}\right\rangle\left\langle+{ }_{\alpha}\right| \\
& \bullet \bullet \\
& |\psi\rangle \mapsto U_{\alpha}|\psi\rangle \\
& \left|-{ }_{\alpha}\right\rangle\left\langle-{ }_{\alpha}\right|
\end{aligned}
$$

$$
|\psi\rangle \mapsto U_{\alpha+\pi}|\psi\rangle=W U_{\alpha}|\psi\rangle
$$

Testing Corrections

$$
\begin{gathered}
\max _{\mathcal{D}} \mathcal{C} * \mathcal{D}=0.373 \\
\frac{1}{15} \approx 0.067
\end{gathered}
$$

Testing Corrections

Testing Corrections

Testing Corrections

Blind Quantum Computation

Blind Quantum Computation

Blind Quantum Computation

$$
\begin{array}{ccc}
\left|+{ }_{\alpha}\right\rangle\left\langle+{ }_{\alpha}\right|:|\psi\rangle \mapsto U_{\alpha}|\psi\rangle & \left|-{ }_{\alpha}\right\rangle\left\langle-{ }_{\alpha}\right|: & |\psi\rangle \mapsto U_{\alpha+\pi}|\psi\rangle \\
||\mid & & \\
\left|-{ }_{\alpha+\pi}\right\rangle\left\langle-{ }_{\alpha+\pi}\right| & \text { Angles } & \text { Outcomes } \\
& \text { Computation: } & \boldsymbol{\alpha}
\end{array}
$$

Blind Quantum Computation

Blind Quantum Computation

$$
\begin{array}{ll}
\mathcal{C}_{1}:=\sum_{\boldsymbol{\alpha}} p_{\boldsymbol{\alpha}}|\boldsymbol{\alpha}\rangle\langle\boldsymbol{\alpha}| \otimes \sigma_{\boldsymbol{\alpha}, \boldsymbol{r}, g} & H_{\min }\left(\boldsymbol{\alpha} \mid \sigma_{\boldsymbol{\alpha}, \boldsymbol{r}, g}\right)_{\mathcal{C}_{1}}>0 \\
\mathcal{C}_{m}:=\sum_{\boldsymbol{\alpha}} p_{\boldsymbol{\alpha}}|\boldsymbol{\alpha}\rangle\langle\boldsymbol{\alpha}| \otimes \sigma_{\boldsymbol{\alpha}, \boldsymbol{r}, g}^{\otimes m} & H_{\min }\left(\boldsymbol{\alpha} \mid \sigma_{\boldsymbol{\alpha}, \boldsymbol{r}, g}^{\otimes m}\right)_{\mathcal{C}_{m}}>0
\end{array}
$$

Blind Quantum Computation

$$
\begin{array}{ll}
\mathcal{C}_{1}:=\sum_{\boldsymbol{\alpha}} p_{\boldsymbol{\alpha}}|\boldsymbol{\alpha}\rangle\langle\boldsymbol{\alpha}| \otimes \sigma_{\boldsymbol{\alpha}, \boldsymbol{r}, g} & H_{\min }\left(\boldsymbol{\alpha} \mid \sigma_{\boldsymbol{\alpha}, \boldsymbol{r}, g}\right)_{\mathcal{C}_{1}}>0 \\
\mathcal{C}_{m}:=\sum_{\boldsymbol{\alpha}} p_{\boldsymbol{\alpha}}|\boldsymbol{\alpha}\rangle\langle\boldsymbol{\alpha}| \otimes \sigma_{\boldsymbol{\alpha}, \boldsymbol{r}, g}^{\otimes m} & H_{\min }\left(\boldsymbol{\alpha} \mid \sigma_{\boldsymbol{\alpha}, \boldsymbol{r}, g}^{\otimes m}\right)_{\mathcal{C}_{m}}>0
\end{array}
$$

Example, numerically:

Hypothesis Testing Causal Structure

$\mathcal{C}_{C M}:=\sum_{c m \in \mathbb{C M}} p_{c m}|c m\rangle\langle c m| \otimes \sigma_{c m}$
$\mathbb{C M}:=$ set of causal models

Hypothesis Testing Causal Structure

$$
\mathcal{C}_{C M}:=\sum_{c m \in \mathbb{C M}} p_{c m}|c m\rangle\langle c m| \otimes \sigma_{c m}
$$

$\mathbb{C M}:=$ set of causal models

${ }^{x} \mid$
$\sigma_{c m}$
$\sigma_{c m^{\prime}}$

Hypothesis Testing Causal Structure

$\mathcal{C}_{C M}:=\sum_{c m \in \mathbb{C M}} p_{c m}|c m\rangle\langle c m| \otimes \sigma_{c m}$
$\mathbb{C M}:=$ set of causal models
if all $c m \in \mathbb{C M}$ have a compatible total order:
$\mathcal{C}_{C M}$ is a valid comb
can use $H_{\text {min }}$ as is
When are the cm distinguishable?

${ }^{x}$ |
${ }^{x}$
$\sigma_{c m}$
$\sigma_{c m^{\prime}}$

Hypothesis Testing Causal Structure

Recall:

$\left\{\rho_{x}\right\}$

$\left\{\sigma_{x}\right\} \quad \longrightarrow$

disjoint, condition on Kraus operators $\leadsto>$ distinguishability adaptivity is useful
$?$

Hypothesis Testing Causal Structure

> if not all $c m \in \mathbb{C M}$ have a compatible total order: $$
\mathcal{C}_{C M} \text { is not a comb - process matrix? }
$$ can we use a modified $H_{\min } ?$

Objectivity of Causal Structure

Thm 1:
Objective existence \Leftarrow Spectrum broadcast structure,

$$
\begin{aligned}
\binom{\text { Objective }}{\text { existence }}+\binom{\text { Strong }}{\text { independence }} \Rightarrow & \left(\begin{array}{c}
\text { Spectrum } \\
\text { broadcast } \\
\text { structure }
\end{array}\right) \\
\rho_{S: E_{1}, \ldots, E_{N}} & :=\sum_{i} p_{i}|i\rangle\langle i| \otimes \rho_{i}^{E_{1}} \otimes \ldots \otimes \rho_{i}^{E_{N}}
\end{aligned}
$$

Thanks!

