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Abstract: How do you control something you can not look at? For controlling quantum systems, information on the system's state could come
through weak measurements. Such measurements provide some information, but will inevitably also perturb the system, meaning there is noise both
in the state estimation as well as in the measurement. We study a simple single particle quantum setup (the quantum equivalent of the instability
problem known as the cartpole problem) and investigate several control methods including reinforcement learning, and compare their performance.
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The aQa group covers the full quantum pipeline

Vedran Dunjko Jordi Tura Hao Wang Alfons Laarman

practical
impact

* Circuit cutting bounds
* Hybrid classical-quantum for tree-search
S _ : * Learning separation classical and QML
roving (learning) advantages and separations
> ' : * Quantum adv. beyond kernel methods
evelopment of economic quantum algorithms t aQa
I__ m - CHR IR 2 E ered a
ardware-aware designs and optimizations Plone

|_ Application-specific focus
and case studies

Please reach out for opportunities
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Our focus is rather more ‘aaq' than ‘aqga’

Algorithms applied to Quantum  Applied Quantum Algorithms

De-noising of STM data to identify gaps
Quantum error decoding using graph neural networks

Genetic algorithms for optimising average gradients in quantum circuits

Felix Frohnert
Representation Learning of Quantum Systems
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Representation Learning of small quantum circuits
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Representation Learning of small quantum circuits
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Representation Learning of small quantum circuits
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(I think) you should care about quantum games

1) Develop new talent, raise awareness
~40% of global population plays video games!*

2) Drive hardware
Why do you buy a new phone?

3) Fruitful research framework
Game circuits as benchmark? Al for quantum game?

*https://explodingtopics.com/blog/number-of-gamers 1 / 1
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beta.tiqtagtoe.com

More info?

evert@tiqtaqtoe.com
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The Quantum Cartpole

Or: how do you control something you cannot look at?

Kai Meinerz Simon Trebst Mark Rudner
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The classical cartpole is a standard benchmark

(6,6)

&

=

Cery)

1. At every time step, you get s = (x, X, 6, 9)
3. You continue for as long as

L‘ 1) the pole doesn’t fall over

2) the cart is within bounds
2. You apply a force to the cart
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The fundamental problem is the same as this instability

O

= e

1. Atevery time step, you get § = (X, X)
3. You continue for as long as

L‘ 1) the ball doesn’t go out of bounds
2. You apply a force to the ball
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The classical version can be optimally controlled

...under some assumptions...

Assume small deviations -> linearize
St41 = Ast

Enter LQR (Linear Quadratic Regulator)
;11 = As, + Bu,

the input/control >
u, = — Ks, X

Determine input s.t. x =0

//_.\\ X = 0
= S

X = (.Z?C, 1) 0 5000 10000

time steps
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It can still be optimally controlled if we make it a little harder

At every time step, you get § = (X) (i.e. stationary picture)

Kalman Filter aka Linear Quadratic Estimator
s, = Fs,_; + Bu,

1

\3
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Even adding noise is not a (big) issue

...under some assumptions...

;41 = As, + Bu, +w,
y, = Cs,+v,

But requires knowing (W;, v,)
w, = N (0,W)

Gaussian white noise process—J

Linear Quadratic Gaussian Controller

™ W E E E EEE D IS ESESDDSDESDSDDED DS ESESEEEE DS DS @S ES S S @SS S S S .S S S S S S S S S S @ .
1

' LQE looks back in time and estimates Sl‘ Is used by LQR to control the system .
1 ¥ :
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Even adding noise is not a (big) issue

...under some assumptions...
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Perhaps more measurements = better state estimate?

N times timestep: dt
Apply force - L Time evolution |=—> Measure X e
LQGC
or [€
Agent ( _x)

Average runtime until game over

1. At every step, you get N measurements 3500
Z. 3000
"\ § 2500
L 22000
2. You apply a force G .
0 10 20 30 40 50

# measurements
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Non-linearity is not a (big) problem either

Extended Kalman Filter
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Final resort: let’s make it quantum

Deep Reinforcement Learning Control of Quantum Cartpoles

Zhikang T. Wang,':* Yuto Ashida,” and Masahito Ueda'-?

Agent
/=)
Force DPrick = ¢’
e

FT
weak measurements

Detector / \

Viar= -%.‘1?2

—Lth Lth

* Algorithms such as GRAPE etc are gradient-based, and work for isolated non-stochastic systems.
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Now using weak measurements to get estimates

Kick Operator

N times

timestep: dt

Sl

Time evolution

Position meas.

Momentum meas.

Kick strength F

& -

RL agent
(PPO)

1. At every step, you get 2N weak measurements
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2. You apply a force to the particle
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The RL agent learns to control the quantum cartpole

classical

mixed quantum
quadratic RL agent

g 2000
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B

£1s
¥

quartic

/
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Mixed

RL trained on classical, evaluated on quantum

[Work In Progress!]

Page 24/28



The RL agent learns to control the quantum cartpole

classical

mixed quantum
quadratic RL agent
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Mixed

RL trained on classical, evaluated on quantum

[Work In Progress!]
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RL can outperform the classical standard
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The Quantum Cartpole

Concluding

Agent

N

Force Drick = €'
-

Detector/ db ’ \\

V(z) = —%a?

Fi

—=Ith I'ip

1. A classical stochastic controller can control quantum systems using weak measurements

2. For non-linear (and noisy) cases, RL controller is able to do better
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