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Abstract: Our universe is quantum, but our everyday experience is classical. Where is the boundary between quantum and classical worlds? How
does classical reality emerge in quantum many-body systems? Does the collapse of the quantum states involve intelligence? These are fundamental
guestions that have puzzled physicists and philosophers for centuries. The recent development of quantum information science and artificial
intelligence offers new opportunities to investigate these old problems. In this talk, we present our preliminary research on using a
transformer-based language model to process randomized measurement data collected from Schrédinger's cat quantum state. We show that the
classical redlity emerges in the language model due to the information bottleneck: although our training data contains the full quantum information
of Schrodinger's cat, a weak language model can only learn the classical reality of the cat from the data. Our study opens up a new avenue for using
the big data generated on noisy intermediate-scale quantum (NISQ) devices to train generative models for representation learning of quantum
operators, which might be a step toward our ultimate goal of creating an artificial intelligence quantum physicist.
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What is Classicality?

® In physics, the word “classical” is used in contrast to
“quantum”: classical physics refers to physics before
quantum mechanics.

e Classical physics is
deterministic.

e |t works pretty well in
the macroscopic

James Maxwell
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How is Quantum Differed from Classical?

e In the early 20th century, it was realized that classical
physics does not quite apply to the microscopic world.

..|

Max Planck Albert Eistein  Niels Bohr E. Schrédinger W. Heisenberg

e A new branch of physics — quantum mechanics — was
established. It is intrinsically probabilistic.

e Quantum mechanics is more exotic: it describes the square
root of probability — called probability amplitude.

Y(z) ~ £/p(z)
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Schrodinger’s Cat

e Quantum superposition can become weirder when it comes
to states of multiple qubits — a famous example is
Schrédinger's cat.

Time evolution

(0 +1)e|f]) (I (= |0 )+ [1£D)

Initial state Entangled cat state
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Schrodinger’s Cat
e The cat state can be modeled by a multi-qubit GHZ state,
0) + [1) Time evolution |0)®N 4 [1)®N
V2 (Quantum circuit) /’ NG

which can be prepared by
a quantum circuit in log N
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|0)®N |1)®N

depth (time).
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Greenberger, Horne, Zeilinger 1989

ajels 1en

CNOT (controlled-NOT) gate
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Quantum State Collapse

e But we never see a superposition cat in reality. Why?

e Copenhagen Interpretation: Observing the cat would cause
the superposition to collapse into one of the two classical
realities: cat alive or cat dead.

L3
+ ® . &F
@ Observe @

e \WWhat happens during the observation?
e Who qualifies as an observer?
e Should the observer be conscious/intelligent? ...
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Quantum State Collapse

e Modern understanding: randomized measurement +
classical data processing.

e Measurement: the system interacts with the environment.

L

| €0
® |nteraction — entanglement (information sharing).

® Information loss = entropy increase:
pure cat state & mixed state ensemble of alive and dead.

® This process is called quantum decoherence. No
intelligence is required at this step.

Joos, Zeh 1985:; Ghirard, Rimini, Weber 1986, Zurek 2003.
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Quantum State Collapse

e Modern understanding: randomized measurement +
classical data processing.

e Measurement: the system interacts with the environment.
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Quantum State Collapse

e Modern understanding: randomized measurement +
classical data processing.

e Measurement: the system interacts with the environment.
50%

® Interaction — entanglement (information sharing).

e |Information loss = entropy increase:
pure cat state = mixed state ensemble of alive and dead.

® This process is called quantum decoherence. No
intelligence is required at this step.

Joos, Zeh 1985; Ghirard, Rimini, Weber 1986, Zurek 2003.
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Quantum State Collapse

e Modern understanding: randomized measurement +
classical data processing.

e Emergent classical reality: how to collapse from the mixed
state back to one of the alive/dead pure states

Decoherence Collapse

1

G = )
‘ﬂ)’“ ) 21 < (Pure state)
(Pure state) +§ |@) (@| N2 |@>

(Mixed state) (Pure state)
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Quantum State Collapse

e Modern understanding: randomized measurement +
classical data processing.

e Emergent classical reality: how to collapse from the mixed
state back to one of the alive/dead pure states

Decoherence Collapse
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Quantum State Collapse

e Modern understanding: randomized measurement +
classical data processing.

e Emergent classical reality: how to collapse from the mixed
state back to one of the alive/dead pure states

Decoherence Collapse

1

G = )
‘ﬂ)’“ ) 21 < (Pure state)
(Pure state) +§ |@) (@| N2 |@>

(Mixed state) (Pure state)

Entropy =0 Entropy = 1 bit » Entropy =0
_ Info. Info.‘ ]
Randomized Classical data

measurement processing
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General Idea
e |dea: use Al to process randomized measurement data.

Quantum superposition Classical reality

ANEIAN YW E Classical World
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Randomize Measurement

e Randomized measurement — estimate properties of an
unknown quantum state by measuring random observables.

e Philosophy: measure first, ask questions later.

e Measurement scheme:
e Prepare an N-qubit GHZ state |¥) = = (|0)®N + [1)®7)

2
e Perform random & local measurements:
® Draw a sequence of Pauli observables uniformly
= (x1,%2,: " ,ZN), x; €{X,Y,Z}
¢ Independently measure each qubit ¢ by its
corresponding observable z;
® Collect measurement outcomes as a sequence
Y= (Y1,Y2, " ,Yn), Y € {£1}
® Repeat ...
Elben et al. 2022
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Randomize Measurement

Randomized measurements collect a large amount of data.
Data structure: a pair of sequences

(x,y) xe{X,Y,Z}*N ye {£1}*V

Data distribution: p(x,y) = p(y|x)p(x)
p(x) =3~ (Uniform, trivial)

1—|—ya;'
p(ylz) = lI’I(X) — |¥)

Classical post-processing: (x, y) are also called classical
shadows, from which the quantum state can be recovered.
1 + 3y;x;

pi= U = E )

(=,y)
Huang, Kueng, Preskill 2020
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Randomize Measurement
e Randomized measurements collect a large amount of data.

(®,y) =e{X,Y, 2}V, ye {1}V

(z,y) ~ p(z,y) = p(y|x)p(x)

e Examples (N = 4): classical shadows of Schrédinger’s cat
b % x: XZXX x: XYXY : XYZZ

y: y: y: —+—+ y: +—++ Do+—++

: YZXX ¢ YXXY : YXZX

D o++—+ Do+

: 227X

S s
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Generative Modeling of Classical Shadows

e Objective: to model the conditional distribution p(y|z) of
measurement outcomes given local observables.

x: Z2ZXY OQObservables (question)

y: ——=* QOutcomes (answer)

® This maps to a chat completion task in natural language
processing. — We can train a transformer-based
generative language model to perform the task.
Vaswani et al. 2017; Devlin et al. 2019

e After training, the model can replace the quantum
experiment to answer questions about the underlying
quantum state (the cat state). — It can “speak” the
quantum language.
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Generative Modeling of Classical Shadows

¢ Objective: to model the conditional distribution »(y|x) of
measurement outcomes given local observables.

e Architecture: transformer-based B-VAE

po(y|x) = /pe(yIZ)pe(zw)

logpy (2| @) -~
Hz Oz v log py (¥ 2)
A

transformer l transformer
encoder decoder

T T
Z Y

Kingma, Welling 2014; Henderson, Fehr 2022
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Generative Modeling of Classical Shadows
e Loss function (ELBO): L= E L(z,y)

(,Y)~Ddat

log po (2| @) - -,
Hz O v logp(y|2)
~ T

transformer l transformer
encoder decoder

T T
T Y

L(x,y)=— E logps(y|lz) Negative log-likelihood
L3

z~pg (z|x)

+ BKL[pg(z|x)||par(z)] KL regularization

e Hyperparameter 8 enables us to impose a variational
information bottleneck on the transformer.

Kingma, Welling 2014; Henderson, Fehr 2022
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Model Evaluation

e Evaluation metric: fidelity — a measure of the closeness
between quantum states.

e Original state (|¥) - the GHZ state):
14+ 3y;x;
O =p= E :

(®,Y)~Paat 2

e Reconstructed state: _
5= B 1+ 3y;x;

(mﬁﬁ)wpmd] i 2

e Fidelity (the probability of observing 5 given |1))

F(p.p) = (T \/vEovp) = (¥lal )

In general, 0 < F'(p, p) < 1 (the larger the better).
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Model Evaluation
e Fidelity of the model reconstructed quantum state

=
8 B
n
e 8
) s
L =
2 8
N o
S

=

-6 -4 -2 0 2 4 6
stronger weaker (Information

Em log, A model bottleneck strength)
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Model Evaluation

e Fidelity of the model reconstructed quantum state
Atlas Boreas Cygnus

=
e B
5 g
£ =
QL =
2 0=
& 2

>

-6 -4 -2 0 2 4
stronger weaker (Information

model log, model bottleneck strength)
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Model Evaluation

e Fidelity of the model reconstructed quantum state
Atlas Boreas Cygnus

=
e B
5 g
£ 3
QL =
2 0=
&

=

-6 -4 -2 0 2 4
stronger weaker (Information

model log, A model bottleneck strength)
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One-Shot Cat Classification

e To understand the difference between Atlas, Boreas and
Cygnus, let us chat with them!

e \We can ask them for the “one-shot cat classification”.

Task: given a one-shot observation of the
cat, determine if it is alive or dead.

|

x: ZZZZZ x: ZZZZZ

rOmpt; yi +htt¥ Yo ————F

X: ZLZZ47Z X: ZZ1ZZZ

Expectation:
Vi 4+
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One-Shot Cat Classification

e |n-distribution classification task

x: 22777
y: ++++7

1.0f -
0.8}

0.6}

0.4}

0.2} .
0.0} ——

e Atlas and Boreas can perfectly determine the life and
death of the cat.

e However, Cygnus is a weaker model and cannot make a
clear judgment about the classical reality.

1.0F

0.8} ' Atlas
0.6} =
0.4} ]
0.2} { m Cygnus

0.0t

| m Boreas

Probability

>
+—~
=
=L
@
o)
Qo
L
Ay
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One-Shot Cat Classification

e Qut-of-distribution classification task
e What about the following prompt?

X: 444147, (This never appears in the classical

shadow data of the GHZ state.)

—t
=
—
=

| Cygnus
: _ _ , : -1.0{ , , , 5
-1.0-0.50.0 0.5 1.0 -1.0-0.500 05 1.0

| Atlas

e
S\

|

o o o

[o52 B TR o 1§
o
o

|
o
(&)

( Z: 5 )prcdict
{Z5)predict

|
o
o

( Z1:4 >observe ( Z1:4 >obscrve ( Zl:4 )observe
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One-Shot Cat Classification

® | ocal Z-measurements destroy the quantum coherence of
the cat state. Can we preserve the coherence?

e Consider local X-measurements:

) x: XXXXZ ) x: XXXXX
y: ++++7 y: ++++7

1.0F

0.8} Atlas
0.6} .

0.4 m Boreas
- NN Nl I Il
0.0} ]

+ _
Q: Is the Schrédinger cat Q: What is the sign of
alive or dead? quantum coherence?

(+) Alive. (+) Positive.
(-) Dead. (-) Negative.

Probability

Probability
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Characterize Representative Models

Model

Atlas

Boreas

Cygnus

i = Iy
accuracy (T)

X144 = X5
accuracy (T)

1.000

1.000

1.000

0.503

0.607

0.634

Fp, p) (1)
S (p) [bit] (V)

Quantum

Classical

Thermal
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Emergent Classicality

e Classicality emerges
with increasing —

e Qubit number
) : (system size),
=] e |[nformation

bottleneck strength.
0.5

e QOur world appears
classical because —

0.0 ¢ Iltinvolves too many
qubits.

_6 -4 e We do not have
stronger enough classical data

model log, processing capability.

Atlas Boreas Cygnus

\ \Classical
) ~
ﬁ-~~
~\
~
-
-~

1
I

5 I

N I
LY
-
Quantum

b
3

qubit number N
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What Does the Latent Space Look Like?

e t-SNE visualization of operator embeddings.
Atlas Boreas

7XZ777
37 clusters

e Each dot represents a sequence of observables.

N Transformer
T < {X’Y’ Z} Encoder

van der Maaten, Hinton 2008
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What Does the Latent Space Look Like?

e t-SNE visualization of operator embeddings.
Atlas Boreas

KXIHX

7X777 ®) Lo

..:.' " o .
37 clusters: X222 32 clusters

e Each dot represents a sequence of observables.

N Transformer
T & {X’Y’ Z} Encoder

van der Maaten, Hinton 2008
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What Does the Latent Space Look Like?

e t-SNE visualization of operator embeddings.
Atlas Cygnus

7XZ7Z LY
37 clusters 9 clusters

e Each dot represents a sequence of observables.

N Transformer
T & {X’Y’ Z} Encoder

van der Maaten, Hinton 2008
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Summary

e \We use a transformer-based language model to process
randomized measurement data collected from Schrodinger’s
cat quantum state.

e Classical reality emerges in the language model due to the
information bottleneck.

e Implying a fundamental limitation on our ability to

understand the full quantum nature of the universe.

® A new avenue for using unlabeled classical shadow data to
train generative models for representation learning of
gquantum operators
— a step toward realizing Al quantum physicists.
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