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Abstract: Dense hydrogen, the most abundant matter in the visible universe, exhibits a range of fascinating physical phenomena such as
metallization and high-temperature superconductivity, with significant implications for planetary physics and nuclear fusion research. Accurate
prediction of the equations of state and phase diagram of dense hydrogen has long been a challenge for computational methods. In this talk, we
present a deep generative model-based variational free energy approach to tackle the problem of dense hydrogen, overcoming the limitations of
traditional computational methods. Our approach employs a normalizing flow network to model the proton Boltzmann distribution and a fermionic
neural network to model the electron wavefunction at given proton positions. The joint optimization of these two neural networks leads to a
comparable variational free energy to previous coupled electron-ion Monte Carlo calculations. Our results suggest that hydrogen in planetary
conditions is even denser than previously estimated using Monte Carlo and ab initio molecular dynamics methods. Having reliable computation of
the equation of state for dense hydrogen, and in particular, direct access to its entropy and free energy, opens new opportunities in planetary
modeling and high-pressure physics research.
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McMahon et al, RMP 2012

10° 10> 10" 10° 102 10" Plasma with H-and e

TT |

o TF Finite electron temperature

Ty v T T T AL

classical TCP
' degenerate TCP

1

Liquid with H and H,
Electron stays in the ground state

Ll

fluid H,,
) solid H

Solidification
Metallization
= 10—3TF Superconductivity...

Ll

Nuclear quantum effect
m,, = 1836m,

Pirsa: 23060041 Page 4/38



Dense hydrogen in the sky and in the lab
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Ablato/

Metallic H Gapsiile

{ \y
<
\ \ - —re—
Lasers

\ IjT gas
DT fuel

Equation-of-state is the input for
hydrodynamics simulations

40 Mbar

Pirsa: 23060041 Page 5/38



Superconductivity in metallic hydrogen

Wigner and Huntington 1935, Ashcroft 1968, ...

BCS theory
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McMahon and

Light ion mass => higher vibrational energy scale () Geperley, PRBaon2
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LlQUld superconductorsz Jaffe and Aschcroft, PRB 1981, Liu et al, PRR 2020

Proton Cooper pairs: Aschcroft, JPCM 2000, Babaeyv et al, Nature 2004
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Dense hydrogen: a simple yet fascinating quantum many-body system

Touchstone of computational methods
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T = 0O: Variational and Diffusion Monte Carlo
Hydrogen chain
Mexico City, 1981 .C).O .O (.,) Q O. O b Q O

AFQMC CBS
FermiNet
TABLE 1 MRCI+Q+F12 CBS
W Efcer Epert  Eror uCCsD CBS
UCCSD(T) CBS
-0.725 - - -0.719 -
-0.892 -0.856 -0.903 -0.884 -0.906 VMC (AGE) T2
-1.002 -0.974 -1.017 -0,996 -1.021
-1.033 -1.013 -1.054 -1.032 -1.059
-1.053 - -1.069 -1.044 -1.078
-1.050 -1.036 -1.068 - -1.073

E

Energy (a.u.)

Eper (2.U.)
o
Q
N
(=]

FCC lattice ground state energy
Ceperley and Alder, Physica 1981

R,

Energy
(=]
(=]
=

gas model. «After I finished the electron gas calculations», Ceperley recalls, «with

Bemni’s urging, I began to work on many-body hydrogen in 1980. An electron gas

is not directly realized in any material, it’s an idealized model, while hydrogen is

a real material. With the hydrogen calculatiog we wanted to address experimental 50 7%
predictions, not just compare with theory. Our hydrogen calculation was the first Separation (ao)
many-electron calculation of a material to lead to important predictions». DeepMind, Pfau et al, PRR 2020

—Computer Meets Theoretical Physics, Springer 2020 Simons collaboration, Motta el al, PRX 2017

3.0 3.5

Fixed proton configuration, no thermal effect
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T 2 Ty Restricted path integral Monte Carlo

Z= ﬂdXdR (X,R| e~ 17| X, R)

0 2

Stat-Mech problem of ring-polymers 2 '

10

degenerate TCP

10°

Pierleoni et al, PRL 1994 P (bar)

Limited to high temperature low density region by the Fermion sign problem
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0 < T < T} a classical-quantum coupled system

X: classical proton configuration

E(X): Born-Oppenheimer energy surface

[ Quantum ]

Solve E(X) by DFT/VMC/QMC/...

E) =i (wx | H | yy)
we  (wxlwy)

Needs a fast and accurate many-body solver
as it is called repeatedly in the inner loop

[ Classical ]

Sample X with classical Monte
Carlo/Molecular dynamics

. { [E(X)—E(X’)] }
min < 1, exp T
B

Tricky to sample unbiasedly with

inaccurate or noisy energy estimates
Pierleoni et al, PRL 2004, Attaccalite et al, PRL 2008
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0 < T < T}: Debate on the liquid-liquid transition

Where is the transition point ?
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Algorithmic uncertainties coupled with finite size effect/sampling ergodicity/...
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Machine learning potential
fit E(X) with a ML model to DFT/VMC/QMC data

R—[G)

Blank, J. Chem. Phys., 1995 =1 A
Behler and Parrinello, PRL 2007 {Rz} {G}

RIAG 1

Can reach larger system size and more samples
However, accuracy is still limited by (or worse than) DFT/VMC/QMC

May or may not address the actual difficulty

Accuracy
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0 < T < T: Debate on the liquid-liquid transition

Is it first or second order ?

Cheng et al, Nature 2020, Karasiev et al, Nature 2021

P =200 GPa

& =-=8 DFT, 256 atoms DFT, 2,048 atoms
m——=a DFT, 512 atoms o DFT, 2,048 atoms, cooling
DFT, 1,024 atoms &—= MLP, 1,728 atoms (ref. )

Matters arising

Ontheliquid-liquid phase transition of
dense hydrogen

Untilrecently, the consensus theoretical and computational interpre-
tation of the liquid-liquid phase transition (LLPT) of high-pressure
hydrogen—which has proved challenging to determine—has beenthat
itisfirst order'>. Cheng et al.® developed amachine learning potential
(MLP) that, in larger-than-previous molecular dynamics (MD) simula-
tions, gives a continuous transition instead. We show that the MLP does
not reproduce our still larger density functional theory MD (DFT-MD)
calculationsasit should. As the MLP is not a faithful surrogate for the
DFT-MD, the prediction of asupercritical atomic liquid by Chengetal.®
is unfounded.

Page 13/38



A-machine learning for dense hydrogen

BLYP
—— BLYP+ ML

E=EDFT+A PBE + ML

—— PBE

A is expected to be small & smooth
learn A from expensive & accurate
QMC data

Tirelli et al, PRB 2022
Niu et al, PRL 2023

1.4 155 1.6
Is

Ideally, the results will be independent of the reference
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We would like to try something different

L3




Deep variational free energy approach

Deep generative models unlocks the power of
the Gibbs-Bogolyubov-Feynman variational principle

Flpl= E [kgTlnp(X)+EX)| =-kTInZ

X~p(X)
l l Li and LW, PRL 18
entropy energy Wu, LW, Zhang, PRL ‘19

V/ Additive statistical noises in E(X) do not deteriorate
stochastic optimization

V/ Turning a sampling problem to an optimization problem
better leverages the deep learning engine: o8 J
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Two kinds of variational Monte Carlo

[ Variational free energy 7 > 0O J [ Variational ground state energy 7 = 0 ]

5 . L3
Gibbs-Bogolyubov-Feynman, Li and LW, PRL "18, Wu, LW, Zhang, PRL 19, ... McMillan 1965, Carleo & Troyer Science 2017, Pfau et al, FermiNet, ...

Flpl= E_|[kTInp(X)+ EX)] Ey] = Hw(R)]

X~p(X) R~|y(R)[? [ w(R)

p: probabilistic models with yw: ANY neural network that
tractable normalization respects physical symmetries

See talks by Jannes Nys and Markus Heyl
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Why does normalization matter?

_— “Boltzmann machine”
UIpRosE p (X) — Z or, energy-based model
0

We have

Flpl= E [EX)-E(X)| —kgTInZy > —ksTInZ
X~p(X)

Intractable!



Deep variational free energy approach

Deep generative models unlocks the power of
the Gibbs—-Bogolyubov-Feynman variational principle

Flpl= E |kThhpX)+EX)| =-kThnZ
X)

X~p(
vlv vlr Li and LW, PRL 18
entropy energy Wu, LW, Zhang, PRL ‘19

Tractable normalization Direct sampling

Mackay, Information Theory, 1= |axpx) § o Krauth, Statistical Mechanics:
Inference, and Learning Algorithms p ' Algorithms and Computations
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Deep generative models

Autoregressive model Normalizing flow

oz
PX) = )y | x)p(rs | 31, x)-+ pX) = H(Z) det (a_X) ‘

a “..the murdereris ”

Mu...)

Z
(Z)

Implementation: transformer with causal mask... Implementation: invertible Resnet (backflow)...
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Variational free energy Maximum likelihood estimation

Known: (noisy) energy function Known: samples
Unknown: samples Unknown: generating distribution

“learn from Hamiltonian” “learn from data”

min KL(py || e E%T) mgn KL (data || pp)
7]

Two sides of the same coin
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Pros and cons

min KL(data || pp)
0

min KL(py || e E%T)
7]

Mode seeking Mode covering

— data

-— BN

- = Pg

Probability Density
Probability Density

Failure mode: local minima Failure mode: hallucination

Goodfellow et al, Deep Learning
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A human expert

“Jack of all trades, master of none” — 2302.10724

filling the gap vs pushing the boundary of human knowledge
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Deep variational free energy for dense hydrogen
Xie, Li, Wang, Zhang, LW, 2209.06095

F= E lkBTlnp(X)+ E [H"’Xm)”

X~p(X)

R~lyxy®)* | wx(R)

e Xx{“u"j pX)

protons probability

r

free energy

@ R-| ol wx(®)

electrons wavefunction
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@ Normalizing flow for proton distribution

(X)—i dt(%)
A “\ox

L

X < Z: aninvertible equivariant neural net

X: proton coordinates  Z: uniform random variables

—e  XiNNX)=Z <Sef

: 2
real ?ar'h‘-le quasi ',Parfl'de
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Physics intuition for normalizing flow

N

O

p(X)

Variational
density

coupled
oscillators

A==m,
Lk,

\

-

\

Invertible

neural net

\

J

center-of-mass
motion

relative N (Z)

motion
Base

distribution

High-dimensional, composable, learnable, nonlinear transformations
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Normalizing flow in physics

Renormalization group  Molecular simulation Lattice field theory

Li and LW, PRL “18 Noe et al, Science ‘19 Albergo et al, PRD ‘19
Li, Dong, Zhang, LW, PRX 20 Wirnsberger et al, JCP 20 Kanwar et al, PRL 20
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® Geminal network

Xie, Li, Wang, Zhang, LW, 2209.06093

wy(R) = 9’ det G -
Jastrow J = )" fXp, Captures atomic, molecular,

and superconducting state

Bouchaud et al, 88
Casula et al, '03
Lou et al, 2305.06989

i

Equivariant features fX,fT,f‘L = FermiNet(X, RT, Rl) Pfau et al, PRR 20

Pirsa: 23060041 Page 28/38



Variational ground state benchmark

16 hydrogen atoms BCC lattice @ rs =1.31

—0.960
—— Holzmann et al, PRE 2003

Attaccalite & Sorella, PRL 2008
—0.9651

Ll L This tests the quality of

variational wavefunction

See also: Pfau et al, PRR 20,
Li et al, Nat. Comm. 22

5000 7500 10000 12500
epochs
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Variational free energy of dense hydrogen

Xie, Li, Wang, Zhang, LW, 2209.06095
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-
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p = 1.38g/cm® T = 6000K

s

free energy (Ry/
|
=

fluid H2 11
® | solid H

solidH, 1 [ /
2 fi] Lo s Lisie K

1000 2000 3000 4000
epochs
Morales et al, PRE '10: two stage thermodynamic
integration: ideal gas -> Yukawa gas -> Hydrogen

54 hydrogen atoms with twist-averaged boundary condition

] 4 106 108 1010 10!2 1014
P (bar)

10

The only parameter point in the literature
with published free energy value
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—— CEIMC AIMD  —— SCvH |
8 700

(a) (b) (<)

2
p_ 2K+V
3L3

virial theorem

- D - 500 '
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Discussions

* Our calculation shows even denser equation-of-state compared
. Me . g
to previous results. The prediction can be systematically
improved with lowering the variational free energy.

1bar

~6,500K

1-2 Mb
o Metallic H

* The predicted equation of state is relevant for planet modeling,
where direct access to entropy is welcoming.

* This is an “uninteresting” point in the phase diagram: a soup of
H+e-and H. No phase transition or other fancy physics.
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Inject physics knowledge into the flow

Uninformative uniform base distribution

1 (aZ)
p(X) = — |det [ —

e 0X

L3

Absolute variational free energy for normalized variational density

Hy(R
F= E |kThpX)+ E v R)
R~y ®* | wx(R)
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Inject physics knowledge into the flow

A more informative base distribution, e.g. a machine learning potential

e —Eg () kgT YA
X) = det | —
p(X) o o

We are optimizing free energy difference to the machine learning model

X~p(X)

Hyx(R) Z
F= E E ———— | —Eyi.(Z) + kgT'In |det | — —kgT'In £y
R~|yx(R)|* X

wx(R)

Pirsa: 23060041 Page 34/38



BLYP
—— BLYP + ML
PBE + ML
—— PBE

rs=144,n=32

deepmd base

10 15 20 25 30 35
rMa.u.)

Correcting base bias with variational optimization Correcting baseline bias in A-ML
Tirelli et al, PRB 2022
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Outlook: quantum protons and finite electronic temperatures

Variational density matrix with neural canonical transformations
Xie et al, 2105.08644 & 2201.03156

min Flp] = kzT Tr(p In p) + Tr(Hp)

p = o | (P, |
T ~

Quantum state basis | ¥,,)

Classical probability p,,

particle
coordinates

masked causal transformer v Normalizing flow
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“Using Al to accelerate scientific discovery” Demis Hassabis, co-founder and CEO of DeepMind, 2021

What makes for a suitable problé

Massive combinatorial Clear objective function Either lots of data
search space (metric) to optimise and/or an accurate and
against efficient simulator
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Thank you!

Zi-Hang Li Han Wang Linfeng Zhang
IAPCM DP/AISI

fermiflow theory, 2105.08644

m* of electron gas, 2201.03156 O github.com/FermiFlow
dense hydrogen, 2209.06005
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