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Abstract: The field of artificial intelligence (Al) has experienced major developments over the last decade. Within Al, of particular interest is the
paradigm of reinforcement learning (RL), where autonomous agents learn to accomplish a given task via feedback exchange with the world they are
placed in, caled an environment. Thanks to impressive advances in quantum technologies, the idea of using quantum physics to boost the
performance of RL agents has been recently drawing the attention of many scientists. In my talk | will focus on the bridge between RL and quantum
mechanics, and show how RL has proven amenable to quantum enhancements. | will provide an overview of the most recent results -- for example,
the development of agents deciding faster on their next move [1]-- and | will then focus on how the learning time of an agent can be reduced using
guantum physics. | will show that such a reduction can be achieved and quantified only if the agent and the environment can also interact
guantumly, that is, if they can communicate via a quantum channel [2]. This idea has been implemented on a quantum platform that makes use of
single photons as information carriers. The achieved speed-up in the agent's learning time, compared to the fully classical picture, confirms the
potential of quantum technologies for future RL applications.

[1] Sriarunothai, T. et al. Quantum Science and Technology 4, 015014 (2018).
[2] Saggio, V. et al. Nature 591, 229-233 (2021).
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Let’s pose some questions!

* Why are we interested in machine learning?

* What is the role of quantum mechanics?

* How can we quantize machine learning? (Or what does it mean to quantize
machine learning?)

* How can we implement quantum machine learning on quantum platforms?
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Where does the hype come from?
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And why considering quantum systems?

Building a (useful) quantum computer in the lab is not easy! (( >>
@]

It mainly requires:

* Accurate control over very small systems;

* Preservation of quantum coherence through many computational operations
(using error correction).

The realization of large fault-taulerant quantum computers is still a challenge.

However, we do have small quantum systems which can test the advantages of
quantum computing!
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Combining machine learning and quantum computing

|alive) + |dead)

2

How to interpret this?
Examples:

* We can use ML to describe the internal state of a quantum system, or to
discriminate between quantum states, or to learn phase transitions in
many-body quantum systems;

S. Aaronson, In: Proceedings of the Royal Society of London A: Mathematical, Physical

and Engineering Sciences, vol. 463, pp. 3089-3114. The Royal Society (2007)

A. Bisio et al. Phys. Rev. A 81(3), 032324 (2010)

J. Carrasquilla, et al. Nature Phys. 13, 431-434 (2017)

* We can use quantum computing to speed up a robot’s decision-making

process or its learning process.
T. Sriarunothai et al. Quantum Sci. Technol. 4, 015014 (2019)

V. Saggio et al. Nature 591, 229-233 (2021)
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Machine learning, more specifically...

L Machine learning
Artificial - Supervised learning

intelligence - Unsupervised learning
- Reinforcement learning

Supervised Unsupervised
learning learning

oo & ; .
0% é 5 e Reinforcement learning

#5

R — , L] . . .
? g :/j e 4, 0 < l'-' . .
% | Ry fgen AGENT

K\
— R 41N W
| B 4 i NN

ENVIRONMENT

It can classify data It can find patterns in data  Based on learning via feedback
(is it a cat or a dog?) (anomaly detection) exchange with an environment
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Reinforcement learning in one slide (or at least what we need to know)

<4 Percept
Action —p

. Was the action ;
correct? ¥ -
/ Ny -
Yes :
No

ENVIRONMENT

<4— Reward

No reward

I. The agent receives perceptual input from the environment;

II. The agent processes the input and performs an action;

III. The environment either rewards or punishes the action.
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Reinforcement learning in one slide (or at least what we need to know)

<4 Percept
Action —p

. Was the action ;
correct? ¥ &
/ Ny .
Yes ;
No

ENVIRONMENT

<4— Reward

No reward

I. The agent receives perceptual input from the environment;

II. The agent processes the input and performs an action;

III. The environment either rewards or punishes the action.

The reward on a certain action increases the likelihood of the agent to perform it again.

- Learning process, which is reinforced
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Combining reinforcement learning and quantum mechanics

et
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Classical

Quantum

Quantum
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Quantum [—> Classical learning techniques facing quantum
tasks, for example the design of quantum

experiments. :
A. Melnikov et al. PNAS 115, 1221 (2018)

Classical |—» Quadratic speed-up in the agent’s decision time.
p+ : G. D. Paparo et al. Phys. Rev. X 4(3), 031002 (2014)

&
m T. Sriarunothai et al. Quantum Sci. Technol. 4, 015014 (2019)
antV

'\

Quantum [—> Speed-up in the agent’s learning process.
V. Dunjko et al. Phys. Rev. Lett. 117, 130501 (2016)
V. Saggio et al. Nature 591, 229-233 (2021)
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What is quantum in the agent and the environment?

Reinforcement learning in one slide ge s e wha we socd o esw)

Let’s recall the slide

<4 Percept [si)
In a quantum-quantum framework,

percepts, actions and rewards are
promoted to quantum states!

Action |a;) —p

<4— Reward |r)

This implies that agent and environment can exchange signals in arbitrary quantum
superpositions.

AGENT Quantum channel ENVIRONMENT
0

e e s e

$.8,8,¢..=, 6}

o s é. -
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lwin)

More in detail: the Grover algorithm

Database of N elements (xi, X2, X3, ..., XN)
Element one wants to find (target element): |z2) = |win)

s T1) + |32) + |73) + ... + |ZN)
Initial state: |s) = [21)
) VN

State orthogonal to the target element:

|z1) + |23) + .. + [&n-1)

s = |lose
e lose)

‘:L']_) = |;’I.‘-2> + ‘.‘I,'3> o et ‘;’L’N}

» Apply an Oracle O to |s) i

RO, . Apply a Reflection R to O|s)

N-4 3N -4 N —4
— (o) + (G )t + -+ (F7z)ow

lose)
018y
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More in detail: the Grover algorithm

RORORO 18}

RORO 18)
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More in detail: the Grover algorithm

RORORO 1S How many Grover steps do we need to find |win)?

RORO 18}

1S>

lose)

O(\/N ) trials are needed to maximize the winning probability!
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Let’s go back to reinforcement learning

Recap

The agent can use the Grover algorithm to
find correct actions (winning states) faster.

* Target element (correct action) = |1),

|S)_A

 Other elements (wrong actions) = [0)a

|0>A
As already seen, the initial state |s), = /€| 1)s +1/1 —€|0), can be prepared.

But how to experimentally encode the [1), and |0)4 states, and how to create the

superposition | s),?

| 5)p is a qubit, which we can implement using photons.
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Quantum superposition with photons

|0)
ly) = al|0) +4|1)

11)

50:50 splitting ratio

?

Image of the beam splitter Tunable beam-splitter

Image of the photonic chip
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88 tunable beam splitters : Tt 1 $
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Quantum interaction (quantum epoch)

* Prepare the superposition |s), = Ve |1)4 +v/1—¢€|0)4
* Use |0)g and | 1) to encode the reward, and put them in superposition
* Apply the oracle — |s5), = =1/e| 1), +1/1 —£|0),

* Apply the reflection — |s5), =1/e( —4e)|1), +1/1 —e(1 —4£)|0),

AGENT \ENVIRONMENT;  -; AGENT

|Oalr) Uno . Uno

| 0AOR) UPrep ; ; -1 UREﬂ ""\9"‘- D1
1108 Um | Uknv i Um

|1a1R) |
No info on
the obtained
reward!

|1) = |win} [1) = |win)

|-“)A
»

]

|0)5 = |lose)

o [0)a=|losc)
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Obtaining the reward classically (classical test epoch)

Use the measured action as input in a classical epoch.
AGENT :ENVIRONMENT AGENT

UEnv

AGENT ENVIRONMENT: AGENT

[0a1R)
| 0a0R) .
| 140r) . Ugnv
|1a1) :

The agent can now update € (to €’) and start a new round

preparing | s), = Ve’ | )y +1/1 - €| 0)4.

No reward
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The hybrid agent

The agent alternates between quantum and classical test epochs.

1ssical test epoch

assical test epoch

assical test epoch

quantum epoch
quantum epoch
quantum epoch
quantum epoch

quantum epoch
cl
cl

classical test epoch
classical test epoch

cl

=
o

— Theory
® Experiment

e
>

=
> o

Average reward 1
o
o

e
=)

200
Even epochs
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The hybrid agent

The agent alternates between quantum and classical test epochs, only as long as

Eswitch < 0.396, and plays classically from that point on.

Eswitch = 0.396

Eswitch < 0.396

yo0da [edrssepd

yo0da [ed1ssep

yooda [edissepd

yooda [ed1ssed
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Reduction in the learning time

Learning time: number of epochs necessary to achieve, on average, a certain
probability & (smaller than 0.396).

-
(=1

e Combined strategy

® Experiment

et
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Combining reinforcement learning and quantum mechanics

-
Optical table ‘. 1-[&

"

Classical Quantum Classical learning techniques facing quantum
tasks, for example the design of quantum

experiments. _
A. Melnikov et al. PNAS 115, 1221 (2018)

Quantum Classical [—» Quadratic speed-up in the agent’s decision time.

» : G. D. Paparo et al. Phys. Rev. X 4(3), 031002 (2014)
T. Sriarunothai et al. Quantum Sci. Technol. 4, 015014 (2019)

o
Qua®
for M

Quantum Quantum [ Speed-up in the agent’s learning process.

V. Dunjko et al. Phys. Rev. Lett. 117, 130501 (2016)
V. Saggio et al. Nature 591, 229-233 (2021)

Pirsa: 23060040 Page 24/30



Designing quantum experiments with ML

Suppose we want to create a specific type of complex entangled state in the lab.
l (e.g. high-dimensional multi-particle states)

We’d need to figure out the specific optical components (not always easy!)

What if we assign this task to a machine?

RESEARCH ARTICLE  PHYSICAL SCIENCES & fYyine ®

Active learning machine learns to create new
quantum experiments

Alexey A. Melnikov 8, Hendrik Poulsen Nautrup . Mario Krenn, Vedran Dunjko, Markus Tiersch, Anton Zeilinger &8,

and Hans J. Briegel -3 | Authors Info & Affiliations

Contributed by Anton Zeilinger, November 14, 2017 (sent for review August 24, 2017; reviewed by Jacob

January 18, 2018 115 (6) 1221-1226 https://doi.org/10.1073/pnas.1714936115

Pirsa: 23060040 Page 25/30



Pirsa: 23060040

The theoretical scheme

Environment

d

Analyzer J'
Agent

percept:

(Y

optical setup i’ - '
A
L \ \ y

action: )

" optical element L8 “\u »‘

4 " b - [, [ ' a
Optical table \. "‘ l&

-

1) The agent places a chosen element on the optical table;

2) The quantum state generated by the setup is analyzed;

3) If the experiment is successful, a reward is given.
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In a little more detail

* A maximum number of optical elements is considered (due to accumulation
of imperfections).

* The produced quantum states are analyzed considering the Schmidt-Rank
vector.

» Tripartite entangled states are considered - examples of Schmidt-Rank
vectors are e.g. (3,3,2) or (3,3,3).

 Other than successfully generating the desired state, the agent should also
use the lowest possible number of optical elements.
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Designing short experiments and learning to create new ones

(3,3,2) states (3,3, 3) states

ri
LY [

-
]
=
[aD)
-
—
—

. —
—
(o
_—
-
b

1

I\-
e
.
>
fan
oL

e
Y0
()
]
QD

—_—

10 20 30 40 50 60
number of experiments x 107

Interestingly, the agent without previous training on (3,3,2) states does not
succeed in creating (3,3,3) states.

The training is beneficial also for new experiments!
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Not only reinforcement learning

Also supervised and unsupervised learning for quantum (and vice versa):

* Supervised learning with quantum computers.
M. Schuld et al. Vol. 17. Berlin: Springer, 2018.

* Quantum (exponential) speed-up for supervised and unsupervised machine
learning algorithms for cluster assignment and cluster finding.

S. Lloyd et al. arXiv:1307.0411 (2013)

* Accelerating unsupervised learning algorithms by quantizing some of their

subroutines. __ , :

E. Aimeur et al. Machine Learning 90, 261-287 (2013)

 Experimental learning of quantum states.

A. Rocchetto et al. Science advances 5, 3 (2019)

* Training Gaussian boson sampling by quantum machine learning.
C. Conti, Quantum Machine Intelligence 3, 26 (2021)

* Detecting entanglement with unsupervised learning (potential scalability

advantage).
g ) Y. Chen et al., Quantum Science and Technology, 7(1), 015005 (2021)

* Reconstructing unknown quantum processes (quantum process tomography).

G. Torlai et al., arXiv:2006.02424 (2020)
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* Embed quantum algorithms in a ML framework to prove quantum advantage;

» Use classical ML in quantum experiments.

However, there are still tons of possibilities to explore (not only
with photonics)!
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