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Dynamics of Open Quantum Systems
Why simulate Open Quantum Systems?

..to discover new physics: ..as a benchmarking tool:
A lack of computational tools Quantum simulators are sensitive to Evolution equation of the quantum state
prevents the exploration of new outside noise — require tools to p:
interesting physics: benchmark these devices:

L
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|0) with the spin-Hamiltonian

H = Zaepx,y,n %)) dazd%'d + htof
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POVM representations

Mapping density matrices to probability distributions

Quantum state p

Probability

POVM-distribution P

3
2

Measurement Outcome a
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POVM representations
Mapping density matrices to probability distributions

POVM-distribution P

s : I I II I
p = tr(PeT1ad' f1a'y -I- R I_III I )

Measurement Outcome a
Operator: ‘1 ,’

Quantum state p

»

Probability
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Neural Network State Encodings
Defeating the curse of dimensionality

Idea: Instead of storing the entire distribution, store a
function that approximates it!
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Defeating the curse of dimensionality

Idea: Instead of storing the entire distribution, store a
function that approximates it!

a » » Pg(a)

Pirsa: 23060036

Page 8/22




Neural Network State Encodings
Defeating the curse of dimensionality

Idea: Instead of storing the entire distribution, store a
function that approximates it!

Pg(a)

Questions:
What is a clever encoding of the distribution?
How to track the evolution of a quantum state?
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Neural Network State Encodings
Defeating the curse of dimensionality

Idea: Instead of storing the entire distribution, store a
function that approximates it!

a » » Pg(a)

Questions:
What is a clever encoding of the distribution?
How to track the evolution of a quantum state?

Architecture choice: Recurrent Neural Networks (RNNs)

Sample a4

Sample a,

e —

P(a;) = g(hy)

e —

P(az|a;) = g(hy)

Pirsa: 23060036

Page 10/22




Neural Network State Encodings
Defeating the curse of dimensionality

Idea: Instead of storing the entire distribution, store a
function that approximates it!

a » » Pg(a)

Questions:
What is a clever encoding of the distribution?
How to track the evolution of a quantum state?

Architecture choice: Recurrent Neural Networks (RNNs)

Sample a4 Sample a,

e —

P(a;) = g(hy)

e —

P(az|a;) = g(hy)

In 2D:

No naive chains!
(Hibat-Allah et. al.,
Phys. Rev. Research 2,
023358)

Red: Sampling path
Blue: Hidden states
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Time-evolution algorithm
How to recover the time-evolution for the network parameters

Network Initialization Time Evolution Observables
Network parameters are analytically At each time t the TDVP Eq. is solved Observables are estimated from the
set to product statesatt = 0 using generated samples samples in each time step
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Time-evolution algorithm
How to recover the time-evolution for the network parameters

Network Initialization Time Evolution Observables
Network parameters are analytically At each time t the TDVP Eq. is solved Observables are estimated from the
set to product statesatt = 0 using generated samples samples in each time step

The Time-Dependent Variational Principle (TDVP)

Setting: At time t the network
parameters 6(t) encode the
probability distribution Pg(y).
For Pg(+) we know the time
derivative, i.e.

: b
Pg(t) - LabPB(t).
How do we obtain the

corresponding parameter update
0(t)?
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Time-evolution algorithm

How to recover the time-evolution for the network parameters

Network Initialization

Time Evolution

Observables

Network parameters are analytically
set to product statesatt = 0

At each time t the TDVP Eq. is solved
using generated samples

Observables are estimated from the
samples in each time step

The Time-Dependent Variational Principle (TDVP)

Setting: At time t the network
parameters 6(t) encode the
probability distribution Pg ().
For Pﬂ(t) we know the time
derivative, i.e.

} b
Pg(t) == Labpg(t).
How do we obtain the

corresponding parameter update
6(t)?

Idea: Minimize a distance measure
between the forward propagated
distribution Pgi) + TPg;) and a trial

evolution from the network
a
B(t)+10(t)’

Minimize
a a Ha
DBty rroey oy T TPor)
w.rt. 6.
Obtain:

Ski O’ = Fi

Notes:
g ¢ e (6 log P 3 log P“)
kk' T
80, POy s 5
e alogP“Labe
: 20, pa
a~P

are obtainable through a sub-
exponential number of samples
(computationally intense part!)

* Not all distance measures are
equally suited for this task, e.g.
the L, norm doesn’t allow for
sampling
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Confinement Physics
What effect does dissipation have on the confinement dynamics?

Originial work: Real-time
confinement following a quantum
guench to a non-integrable model,
Kormos et. al. Nat. Phys. (2017)

1 1
L0 LARR Y AR

RO i i ) T Tl

SRRRFCEEUSRSES
T3 T T T5Is
=l T T Sredeedeoke kNG I

A&
ST

AT T 11

T T
IRETET T T T
(BT T T T T T Te Tl

Space

Time

= <
B e
214

Pirsa: 23060036 Page 15/22




Confinement Physics

What effect does dissipation have on the confinement dynamics?

Originial work: Real-time
confinement following a quantum
guench to a non-integrable model,
Kormos et. al. Nat. Phys. (2017)
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Augmented study: Spin-chain of length L = 32 with nearest neighbor couplings
H = I, 6f0f, + h%c{ + h*a with h% = 0.05, h* = 0.25and y = 0.25, L = o*
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Extension to partial differential equations

Adapt formalism to Fokker-Planck type equations

Idea: Minimization of

- (Pa(t)+ré(t) (), Po () (X) + TPy () (x))

Diffusion Equation t=0 t=2
* 6 =0(t=0) 6=0(t=2)

Probability Space
dtPa(r) = Bpan
Parameter Space
0)=51.F e

Necessary adaptations:

* Replace network to approximate
continuous distributions

* Replace evolution equation by partial
differential equation

Architecture Details: Utilize Normalizing Flows (NF), to obtain a
parameterized ansatz function.

Set of coupling blocks {¢}:

Encode coordinate
transform from latent space
to real space

Real space probability
obtained via change of
coordinate transform:

d
p(x) =p,(2) - I£I
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Extension to partial differential equations
Adapt formalism to Fokker-Planck type equations

Application: Heat Equation in eight
dimensions

0:p(t, x) = DAp(t, x),

22 —(V+d)/2
with p(0, x) « (1 + 7)
224 T J
—— Student-t (v =2) - INN e
204 === Student-t (vo=2) - Grid ’,/
—— Gauss - INN e

18 4 === Gauss - Analytical fal

g 20 ,/7
e !
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Extension to partial differential equations

Adapt formalism to Fokker-Planck type equations

Application: Heat Equation in eight
dimensions

atp(tx x) = DAxp(tr X),

2 -(V+d)/2
with p(0, x) o« (1 + %)

“iH — Student-t (vg=2) - INN _,..--"""“
20 41=== Student:t (vo=2) - Grid | wper="""1 "]
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Application: Continuous phase-space dynamics of 3 coupled oscillators
with dissipation to a thermal bath (6-dimensional phase space).

EOM: O:p(t,x,p) = [-0pH - 8x + OxH - Op+

v (P 0p +mkpd, T;0; )] p(t, x, p)

(a) (0) (b) (0%) - (0)? (d) Entropy
jMe————————— [Laas=
k W | ==X - Wieher
T=— x-INN
61 === p-Wiener 14
p-INN
4 f: \\ T L 12 4
P R
Wi \ ..,p_d\_a-"“ """"""""" i
2 4 5 "";;;axm-**:::....'—“ 10 —— INN
A -=- Steady State
0 2 4 0 2 4 0 5 10
wt wt wt

Evolution of the means (a), variances (b) and entropy (c). The system’s
initial configurationis x = (1,0,0) and p = (0, 1, 0), with temperatures

kT /mo= = (10,3,1).
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QOutlook

Problems & Remarks

Further Questions:
* What are the fundamental restrictions on neural
quantum states?

* Optimally suited network architecture?
(Also see: PRB 107, 195115)
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Outlook

Problems & Remarks

Further Questions: Thanks to my collaborators!
* What are the fundamental restrictions on neural
guantum states?

* Optimally suited network architecture?
(Also see: PRB 107, 195115)

Martin Garttner, Markus Schmitt,

Further Reading: Heidelberg University Regensburg University

* Open Quantum Dynamics with NQS: Phys. Rev. Lett.
127, 230501

« TDVP for PDEs: Mach. Learn.: Sci. Technol. 3, 04L.T02
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Outlook

Problems & Remarks

Further Questions:
* What are the fundamental restrictions on neural
guantum states?

* Optimally suited network architecture?
(Also see: PRB 107, 195115)

Further Reading:
* Open Quantum Dynamics with NQS: Phys. Rev. Lett.
127, 230501

« TDVP for PDEs: Mach. Learn.: Sci. Technol. 3, 04L.T02

Thanks to my collaborators!

Markus Schmitt,
Regensburg University

Martin Garttner,
Heidelberg University

Questions?
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