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Abstract: Binary neural networks, i.e.,, neural networks whose parameters and activations are constrained to only two possible values, offer a
compelling avenue for the deployment of deep learning models on energy- and memory-limited devices. However, their training, architectural
design, and hyperparameter tuning remain challenging as these involve multiple computationally expensive combinatorial optimization problems.
Here we introduce quantum hypernetworks as a mechanism to train binary neura networks on quantum computers, which unify the search over
parameters, hyperparameters, and architectures in a single optimization loop. Through classical simulations, we demonstrate that of our approach
effectively finds optimal parameters, hyperparameters and architectural choices with high probability on classification problems including a
two-dimensional Gaussian dataset and a scaled-down version of the MNIST handwritten digits. We represent our quantum hypernetworks as
variational quantum circuits, and find that an optimal circuit depth maximizes the probability of finding performant binary neura networks. Our
unified approach provides an immense scope for other applications in the field of machine learning.
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ChatGPT: The Lastest Al Sensation

Business
What is Al chatbot phenomenon
Can the new Al tool ChatGPT replace human ChatGPT and cou]dp,t replace
work? Judge for yourself o S Nawaaa
What is OnenAl's GPT-4 and how does it
fl lin( v = & Interest over time Google Trends
N-.... avkificial imballimamean tmal cam racmame Fa o b . ChaIGPT

tGPT - and appears to

* The technology behinc
get even more powerf

a By Samantha Murphy Kelly, CNN Business
Updated 4:42 AM EDT, Wed March 15, 2023

Chat( |
What Is ChatGPT; Cobreced "
About the AI Chatbot The Brilliance and Weirdness of ChatGPT

OpenAl’s chatbot and Microsoft’s conversational Bing have triggered a
new Al race that may reshape the future of work

A new chatbot from OpenAl is inspiring awe, fear, stunts and attempts to
circumvent its guardrails.
By Karen Hao By Kevin Roose

Updated April 11,2023 at 8:44 pm ET
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Some issues of generative Al

The Generative Al Race Has a Dirty Secret

Integrating large language models Into search engines could mean a fivefold Increase In computing power and huge carbon emissions,

While neither OpenAl nor Google, have said what the computing cost of their products
is, third-party analysis hy researchers estimates that the training of GPT-3, which
ChatGPT is partly based on, consumed 1,287 MWh, and led to emissions of more than
550 tons of carbon dioxide equivalent—the same amount as a single person taking 550
roundtrips between New York and San Francisco.
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Some issues of generative Al

The Generative Al Race Has a Dirty Secret

Intagrating large language models into ssarch angines could mean a fivefold Incraass In computing power and huge carbon emissions.

Consumption COze (Ibs)

Air travel, 1 passenger, NY <>SF 1984

Human life, avg, 1 year 11,023

American life, avg, 1 year 36,156

Car, avg incl. fuel, 1 lifetime 126,000

Training one model (GPU)

NLP pipeline (parsing, SRL) 39 Joli el
w/ tuning & experimentation 78,468 -4, which

Transformer (big) 197, [tetmoredi

w/ neural architecture search 626,155 petiun ity DU

Table 1: Estimated CO5 emissions from training com-
mon NLP models, compared to familiar consumption.

[1] E. Strubell, A. Ganesh and A. McCallum, Energy and Policy Considerations
for Deep Learning in NLP, arXiv:1906.02243
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Making Al Less "Thirsty": Uncovering and Addressing the Secret
Water Footprint of Al Models

Pengfei Li, Jianyi Yang, Mohammad A. Islam, Shaolei Ren

The growing carbon footprint of artificial intelligence (Al) models, especially large ones such as GPT-3 and GPT-4,
has bean undergoing public scrutiny. Unfortunately, however, the equally important and enormous water footprint of
Al models has remained under the radar. For example, training GPT-3 in Microsoft's state-of-the-art U.S. data
centers can directly consume 700,000 liters of clean freshwater (enough for producing 370 BMW cars or 320 Tesla
electric vehicles) and the water consumption would have been tripled if training were done in Microsoft's Asian data
centers, but such information has been kept as a secret. This is extremely concerning, as freshwater scarcity has
become one of the most pressing challenges shared by all of us In the wake of the rapidly growing population,
depleting water resources, and aging water infrastructures. To respond to the global water challenges, Al models can,
and also should, take soclal responsibility and lead by example by addressing their own water footprint. In this paper,
we provide a principled methodology to estimate fine-grained water footprint of Al models, and also discuss the
unigue spatial-temporal diversities of Al models' runtime water efficiency. Finally, we highlight the necessity of
holistically addressing water footprint along with carbon footprint to enable truly sustainable Al.
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Binary Neural Networks (BiNNs)

Standard NN Binary NIV

\f\];&eHL

* BiNNs are neural networks with weights and activations constrained to two possible values (e.g. -1 and 1.)[1]
* Training is performed with real weights but binary activation functions — inference is made on binary weights

[1] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, Binarized neural networks, Advances in neural information processing systems 29 (2016)
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BiNNs — Example of Matrix-Vector operation

Step 1 Step 2

Y= Wil +b Z = Activation(Y)

Inputs | Outputs Z

”

Neural cell structures in a
32-bit CNN

Neural cell structures in a
1-bit BNN

@

Step 1

By = sign(l)

Step 3

Z = Activation(Y)

By = sign(W)

Inputs | Outputs Z

Step 2

Y=30 By B +b

* Picture taken from C. Yuan and S. S. Agaian, arXiv:2110.06804v4
* Inference step can leverage bitwise operations like XNOR and POPCOUNT
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BiNNs — Training procedure
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Forward pass of Weights

w—L e J—> Bw

STE

Backward pass of Gradient

1o $fix =)
Sign(z) :{+ s Sfz=20,

—1, otherwise.

z, ifr>2—1land z <1,
if z < -1

5 otherwise.

Approx(z) = { —1,

ifrz—landzx

0, otherwise.

A

1,
STE(x)=

dApprox(z) |1,
dx i

Picture taken from C. Yuan and S. S. Agaian, arXiv:2110.06804v4
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BiNNs — Some results

Table 12. BNN Accuracy comparisons on CIFAR-10

Full Precision Base CNN

They have demonstrated more than
100x energy efficiency on FPGAs
compared to GPUs for comparable

CNN Name Acc(%) :
VGG-Small(2018) 93.8 dccutacylll _ _
VGG-11(2019) 83.8 And 32x memory with 2x computational
NIN(2019) 84l2 speed compared to AlexNet[2]
ResNet-18(2020b) 93'0 Improvements still needed to reach full-
ResNet-20(2020b) 91'7 precision network accuracy.
WRN-22(2016) 92.62
WRN-22(4 x Kernel Stage)!(2016) 95.75
BNN Accuracy Perforr Bi-Real-Net(2018) ResNet-18xx? 89.12(2021)
BNN Name Topology HadaNet(2019) Customized(fw=4;8a=4) 88.64
BNN(2016) VGG-Small NIN(Bw=4; Ba=4) 87.33
XNOR-Net(2016) VGG-Small Customized(Sw=16; fa=2) 89.02
WRN-22 NIN(Bw=16; Ba=2) 88.74
WRN-22(4 x Kernel Stag PCNN(2019) WRN-22 89.17(J=1)°
ResNet:18 WRN-22 91 27(J=2)2
WRN-22 92.79(J=4)3
WRN-22(4 x Kernel Stage)! 94 31(J=1)"
WRN-22(4 x Kernel Stage)® 95.39(J=4)3

[1] Gao, J.; Liu, Q.; Lai, J. An Approach of Binary Neural Network Energy-Efficient Implementation. Electronics 2021, 10, 1830.
@cprrtqtﬁ!r.'{(@ f@‘(uan and S. S. Agaian, arXiv:2110.06804v4 [2] M. Rastegari, V. Ordonez, J. Redmon, A. Farhadi, XNOR-Net: ImageNet Classification Using Binary CNNs, arXiv:1603.05279v4
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Typical Machine Learning Pipeline

Hyperparameters Model
Model Training & architectural Model Evaluation Deployment
search /Inference

Data
preparation

Current advantage
in using BiNNs

* Can we provide BiNN advantage before the inference step?

* Nested training with hyperparameter and architectural search causes three orders of magnitude more costs[1]
Can we reduce BiNN training to a single optimization loop?

[1] E. Strubell, A. Ganesh and A. McCallum, Energy and Policy Considerations for Deep Learning in NLP, arXiv:1906.02243
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Quantum computers energy advantage

PAPER

Establishing the quantum supremacy frontier with a 281
Pflop/s simulation

Benjamin Villalonga'**, Dmitry Lyakh**, Sergio Boixo®, Hartmut Neven®, Travis §
Humble', Rupak Biswas', Eleanor G Rieffel', Alan Ho® and Salvatore Mandra'-"*©

Abstract

Noisy intermediate-scale quantum (NISQ) computers are entering an era in which they can
perform computational tasks beyond the capabilities of the most powerful classical computers,
thereby achieving ‘quantum supremacy’, a major milestone in quantum computing. NISQ
supremacy requires comparison with a state-of-the-art classical simulator. We report HPC
simulations of hard random quantum circuits (RQC), which have been recently used as a
benchmark for the first experimental demonstration of quantum supremacy, sustaining an average
performance of 281 Pflop/s (true single precision) on Summit, currently the fastest supercomputer
in the world. These simulations were carried out using qFlex, a tensor-network-based classical
high-performance simulator of RQCs. Our results show an advantage of many orders of
magnitude in energy consumption of NISQ devices over classical supercomputers. In addition, we
propose a standard benchmark for NISQ computers based on qFlex.
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Training BiNNs with quantum computers — previous works

Quantum Annealing Formulation for
Binary Neural Networks

Michele Sasdelli Tat-Jun Chin
School of Computer Science, The University of Adelaide
Adelaide SA 5005, Australia
{michele.sasdelli,tat-jun.chin}@adelaide.edu.au

Rassarch Track Paper KDD “19, August 4-A, 2019, Anchorage, AK, USA

Training and Meta-Training Binary Neural Networks
with Quantum Computing

Abdulah Fawaz Paul Klein
abdulah fawazgdsiemens- healthineers.com Sebastien Plat
Siemens Healthineers, Digital Services, Digital Technology klein paul health com
und Innovation, sebastien plat@slemens- healthineers.com
Princeton, New Jersey, USA Slemens Healthineers, Digital Services, Digital Technology

and Innovation,
Princeton, New Jersey, USA

Simone Severini Peter Mountney
sseverni@uclacuk petermountney@siemens-healthineers.com
Diepartment of Computer Seience, University College Siemens Healthineers. Digital Services. Digital Technology
Landon and Innavation,

Princeton, New Jersey, USA
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Quantum advantage in training binary neural networks

Yidong Liao,! Daniel Ebler,!:? Feiyang Liu,' and Oscar Dahlsten®®%2.*

! Institute for Quantum Science and Engineering, Department of Physics,
Southern University of Science and Technology (SUSTech), Shenzhen, China
2 Wolfson College, University of Ozford, Linton Road, Oxford OX2 6UD, UK
A Center for Quantum Computing, Peng Cheng Laboratory, Shenzhen, 518000, China
* London Institute for Mathematical Sciences, 35a South Street Mayfair, London WI1K 2XF, UK

QUANTUM-AIDED META-LEARNING FOR BAYESIAN BINARY NEURAL NETWORKS VIA
BORN MACHINES

Ivana Nikoloska and Osvaldo Simeone

KCLIP, CTR, Department of Engineering, King's College London
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BiNNs in quantum superposition

W= az=(6-1: 62! 6'3! 34)
0, and 0y are weights which take value {0,1}.

03 is a bias

04 encodes an architectural choice, for e.g. activation function choice

v _Vix) ifa,=0
o0 =0 forma

|l[J) — Z "I"(Ul, 03, 03, U4)|U1; 03, 03, 04)
ay, 02, 03, 04

w=(0,, 0;, 03, G4) [y = 2 v (0'1, o

CW) = F-514 LONNGaw)y)

. Carras&ﬂléa, M. Hibat-Allah, E.M.I, A. Makhzani, K. Neklyudov, G. W. Taylor, and G. Torlai, arXiv:2301.08292v1

G/ Q @mu

Pirsa: 23060035 Page 13/24



6" = arg min E (0)
e

Variational Quantum Algorithms

Dyey

Image

Quantum :
hypernetwork
expressed through _’
a parameterized i
circuit '

]
*

J. Carrasquilla, M. Hibat-Allah, E.M.I, A. Makhzani, K. Neklyudov, G. W. Taylor, and G. Torlai, arXiv:2301.08292v1

E (8) = (Vg|C|Ws)
= Z [Wo (0,00
T o
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Results: BiNNs applied to a Gaussian dataset — Full enumeration

J. Carras ulg, M. Hibat-Allah, E.M.I, A. Makhzani, K. Neklyudov, G. W. Taylor, and G. Torlai, arXiv:2301.08292v1
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Results: BiNNs applied to a Gaussian dataset

0.68
0.66
m
p. state v10.64
2]
I3
1 lay W 0.62
|
2 lay 0.60
W
*  Task: Binary classification of data points 3 Iay Q
+  Training objective: Optimize weights, biases 0.58
and architectural choice of nonlinearity 4 Iay
*+  Run optimization at least 200 times and evaluate the probabilities of finding C 0.56
an objective function with value £(8).

*  Compute the probability that E(8) is less than €.
*  Quantum optimization is effective.
*  Entanglement increases success probability.

8 b oo b @
o s\"% »@!e‘z\,@ie‘%\,@l"" . N
X

. ). Carrasquilla, M. Hibat-Allah, E.M.I, A. Makhzani, K. Neklyudov, G. W. Taylor, and G. Torlai, arXiv:2301.08292v1
e/QEmm®O
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Results: BiNNs applied to a Gaussian dataset

W] W2 bg bl Nh|d Nonl

Param.y, 1= (L 2 3 4 5 6/(7 8 9[10)(11 12 13 (14) 15) ]

Wi W, b, b Nhid Non

b

e - | (B OEB TIDE TEHB WS

ool Carras&ﬂlla, M. Hibat-Allah, E.M.I, A. Makhzani, K. Neklyudov, G. W. Taylor, and G. Torlai, arXiv:2301.08292v1
e/ QAmm@®®
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Results: BiNNs applied to a Gaussian dataset

| Nhig Nenl
ParnmNm_.g—[[l 73 4 8 (7 TL]O} 1 12 13) (14) 13) |
Nhid Nonl

e - | (EEO D E Q6 DG ® )

b
p. state A
1lay A
*  Task: Binary classification of data points 2lay A
+ Training objective: Optimize weights, biases, architectural choice of nonlinearity,
+ and hidden layer width (2 or 3). 3lay A
*  Lower success probability but overall successful optimization.
4lay A
¢  Optimal circuit depth— optimal use of entanglement
C
A O (S
AT ,3\,@10 2°

J. Carras ulg, M. Hibat-Allah, E.M.I, A. Makhzani, K. Neklyudov, G. W. Taylor, and G. Torlai, arXiv:2301.08292v1
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Results: BiNNs applied to reduced MNIST (4x4 pixels) dataset

* Task: Logistic regression
* Training objective: Optimize weights and biases (-3 and -1)

0.90 D it O
085
p. state Vi
20.80
11 i : -
ay U;J 0.75 *  High success probability.
22y £0.70 * Optimal circuit depth— optimal use of entanglement
Ly
T 0.65
3 lay '
1 L :.. :. 1 il i 0.60
L e e ey ey
0.3268 0.3270 0.3’:?(?;;2) 0.3274 0.3276 ?(06-"\3\9\\—3‘*3‘5 'L\'a\ieﬁ 3\.’3“16‘6

Gl Carras&ﬂlla, M. Hibat-Allah, E.M.I, A. Makhzani, K. Neklyudov, G. W. Taylor, and G. Torlai, arXiv:2301.08292v1
O/ QAmu@®O
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Results: Global vs Local Objective function

W(S)= Y |f(61,..-68)*05,504,.0n)

T14..0N

+ a)and b) are Gaussian datasets with activation and # of layers choice
respectively. Dominant contributions are 2- and 3- local.

* ¢)is the rescale MNIST dataset. Dominant contributions are independent
local fields.

* The loss function is predominantly local.

a
o - N-6
1024 ¥ N=10
= —— N=14
g h’\v\,\'\k'—:— N=18
10781 ,\\
g = g E & 0 42 94 i8 e
b f -+ N=1
10—3~\-"“' -
@ ‘L__"—NL_
3 10761 ‘_1_+'“‘\\
0 2 4 8 d00 12 14
c - N=5
1075 ¥ N=10
G —r— N=17
§10715-
10725 T T T T
0 2 4 6 8
S

J. Carrasquilla, M. Hibat-Allah, E.M.I, A. Makhzani, K. Neklyudov, G. W. Taylor, and G. Torlai, arXiv:2301.08292v1
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Results: Benchmarking single-loop optimization

Task: Binary classification of data points

Training objective: Optimize weights, biases and architectural choice of nonlinearity

E(@) is averaged over 100 independent realizations of training datasets of size N,

The generalization gap behaves as in standard ML approaches

D¢
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0.30 1
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J. Carras UI% M. Hibat-Allah, E.M.I, A. Makhzani, K. Neklyudov, G. W. Taylor, and G. Torlai, arXiv:2301.08292v1
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Preliminary Results: BiNNs applied to reduced MNIST (8x8 pixels) dataset

0.9_ et Fr el inl-L bl ELA Dt T okttt
Goal L
] =
5 Z
E : Cross Entropy Loss
0.7 £ 5
m ‘E 2 —— Full sample
n i
. b 2.
S : —— Full sample 1
R L Best 10%
o /I P Best 5% 0, . ] .
Al I S Best 1% 0 500 1000 1500
0 500 1000 1500
Iteration

*  Task: Logistic regression

and choice of activation function

Training objective: Optimize weights, biases (-1 and +1)

P. Torta, G. Lami, J. Carrasquilla, M. Collura, EMI, work in progress

G/ Qmm

Pirsa: 23060035

o

Final quantum state sampling

20%
Activations B Sigmoid a§t|v§t|on
B ArcTan activation

——

-

15%

10% -

% of shots

5% 1

0% -
90% 95% 100%

70% 75% 80% 85%
Test-set accuracy

Nqubits=66 — way beyond full enumeration
Training shots=1500, Validation shots=10,000
Circuit depth=2, Trained with MPS using QN-SPSA.
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Conclusions

Demonstrated training of BINNs using variational quantum circuits

Quantum effects such as entanglement were shown to enhance the
optimization process

Training, hyperparameters and architectural searches were successfully
combined in a single optimization loop

Training BiNNs on quantum computers would help reduced carbon
footprint.

Substantial work is still needed to scale our approach to Deep Learning
models, e.g multibasis encoding or adaptative layer learning
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