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DISTRIBUTED QUANTUM COMPUTING

Each node is a quantum simulator.
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B3 | |
Each node is a quantum simulator.
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DISTRIBUTED QUANTUM COMPUTING

B3 . _
Each node is a quantum simulator.

x’% The nodes are in communication with

each other, forming a network.

Through cooperation, the allocated
resources can address a single quantum
computing task.
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DISTRIBUTED QUANTUM COMPUTING

@ - K% Non-local operations are required for
- 5 the distributed simulators to behave as
x a cooperative network.

In the near-term, non-local operations
are costly!
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DISTRIBUTED QUANTUM COMPUTING

@ - 1‘% Non-local operations are required for
2 5 the distributed simulators to behave as
x a cooperative network.

In the near-term, non-local operations
are costly!

Motivating Question:

To what extent is distributed quantum computation viable
when limited information is passed between simulators?

Pirsa: 23060030 Page 8/56



A FRAGMENTED SYSTEM

Motivating Question:

To what extent is distributed quantum computation viable
when limited information is passed between simulators?
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A FRAGMENTED SYSTEM

Motivating Question:

To what extent is distributed quantum computation viable
when limited information is passed between simulators?

Classical Link - classical channel between distributed
simulators for limited classical information transfer

Quantum Link - quantum channel between distributed
simulators for limited quantum + classical information transfer
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12

PASSING INFORMATION ACROSS THE INTERFACE

Within a fragment, al/ the
interactions V,; between qubits
are included in the computation

Use measurement-informed mean-field
corrections to approximate the presence of
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PASSING INFORMATION ACROSS THE INTERFACE

Within a fragment, all the
interactions V,; between qubits
are included in the computation

Use measurement-informed mean-field -
corrections to approximate the presence of

@ @ \fﬁ environment qubits

@ @ Use extra qubits (“auxiliary qubits”) to facilitate
@ > the computation through additional
= interactions.
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PASSING INFORMATION ACROSS THE INTERFACE

Within a fragment, al/ the
interactions V,; between qubits
are included in the computation

/ Use measurement-informed mean-field
~ B \\ corrections to approximate the presence of
@ @ f\« '\ environment qubits
@ @ Use extra qubits (“auxiliary qubits”) to facilitate
@ ot the computation through additional
interactions.
N

We are going to focus on e quféfzj . hz 5

spin model Hamiltonians: — ;
Jj<i i=1
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PASSING INFORMATION ACROSS THE INTERFACE

Within a fragment, a// the
interactions V,; between qubits
are included in the computation

Use measurement-informed mean-field
corrections to approximate the presence of

@ @ fﬁ environment qubits

@ @ Use extra qubits (“auxiliary qubits”) to facilitate
@ e the computation through additional
interactions.

spin model Hamiltonians: —
Jj<i

N
Wi ing to f :
e are going to focus on H=—Zfij§§§zj—hszz
i=1
Na

Hrea == ) JySiSl—h ) $i+ Vo (8)

j<iea i=1
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MEAN-FIELD FRAGMENT CORRECTION

To mimic the presence of the environment qubits, use mean-field corrections

Quantum Ising-Like Model:  H = Z JiiSL8 — h Z St

Jj<i

Mean-Field Approximation: ~ Hyp = Z]U (Sj) + Sj §§)) hz SL

j<i i
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MEAN-FIELD FRAGMENT CORRECTION

To mimic the presence of the environment qubits, use mean-field corrections

Quantum Ising-Like Model:  H = Z JiiSL8 — h Z St

j<i

Mean-Field Approximation: ~ Hyp = Z]U (Sj) + Sj §z‘)) hz Sk

j<i L

Fragment Hamiltonian w/ Mean-Field Correction:

Hea=— Y 181800y 8i= b ({(s}) vi € B}) 8

j<iea 1EA €A jEB

Pirsa: 23060030 Page 17/56



18

AUXILIARY QUBITS

To enable entanglement beyond a single fragment, incorporate extra “auxiliary”
qubits that can mediate additional interactions with the system qubits.

Nearest Neighbor interactions:

One interaction bridges the /‘ "
: : : ij
interface of the fragments

Have the auxiliary qubit in each fragment interact with the system according to V;;:

LK > J H_J

System qubits  Aux. Aux.  System qubits
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OPTIMAL AUXILIARY ENCODING

Which interactions are “most important™?

Select auxiliaries to minimize the short time simulation error due to fragmentation

e=1- |(U}.‘l‘(.:zr:)U(a!r:))|2 = var(H — Hy)dt? + 0(dt*)

Rule: encode the environment qubit that has
the largest contribution to var(H — Hy).

H-Hp=— ) JySis)
(1,7)El
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OPTIMAL AUXILIARY ENCODING

Which interactions are “most important™?

Select auxiliaries to minimize the short time simulation error due to fragmentation

e=1- |(U}if(.:zr:)U(a!r:)H2 = var(H — Hp)dt? + 0(dt?)

Rule: encode the environment qubit that has
the largest contribution to var(H — Hy).

. i & : :
H—Hp=- ) J;5:5; Any interactions that cross
(et the red boundary form the
interface of this fragment.
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FRAGMENTED TIME
EVOLUTION

* Classical Link Results
* Quantum Link Results
* Role of Auxiliary Encoding
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AUXILIARY QUBITS: CLASSICAL VS. QUANTUM LINK

e =1- Ul @OUE)|" = var(H — Hp)dt? + 0(dt*)

Rule: encode the environment qubit(s) that has the largest contribution to var(H — Hy).

Classical Links: Estimate the error contribution of each environment qubit after one time
step to select the auxiliary encoding — this choice will be fixed throughout the simulation.

The auxiliary qubits are extra qubits included in each fragment!
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AUXILIARY QUBITS: CLASSICAL VS. QUANTUM LINK

e =1-|UW@OUE)|" = var(H — Hp)dt? + 0(dt*)

Rule: encode the environment qubit(s) that has the largest contribution to var(H — Hy).

Classical Links: Estimate the error contribution of each environment qubit after one time
step to select the auxiliary encoding — this choice will be fixed throughout the simulation.

The auxiliary qubits are extra qubits included in each fragment!

Quantum Links: Use nonlocal operations to selectively shuttle/teleport only a handful
of qubits, and actively adapt this choice as the variance measurements change over time.
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AUXILIARY QUBITS: CLASSICAL VS. QUANTUM LINK

e =1-|Ul@OUE)|" = var(H — Hp)de? + 0(dt*)

Rule: encode the environment qubit(s) that has the largest contribution to var(H — Hy).

Classical Links: Estimate the error contribution of each environment qubit after one time
step to select the auxiliary encoding — this choice will be fixed throughout the simulation.

The auxiliary qubits are extra qubits included in each fragment!

Quantum Links: Use nonlocal operations to selectively shuttle/teleport only a handful
of qubits, and actively adapt this choice as the variance measurements change over time.

The information held by auxiliary qubits is shared between fragments!
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CLASSICAL LINK: AUX. QUBITS + MF CORRECTIONS

Fragment 2

Fragment 1
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CLASSICAL LINK: AUX. QUBITS + MF CORRECTIONS

Fragment 2

Fragment 1

Interaction
interface [
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CLASSICAL LINK: AUX. QUBITS + MF CORRECTIONS

Mean field >
o Jas(S5¥) Qi

Mean field &
2(3), &
OC]SG(S;E SR

Fragment 1
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interface [

Fragment 2
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CLASSICAL LINK: TIME SIMULATION RESULTS
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CLASSICAL LINK: TIME SIMULATION RESULTS
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CLASSICAL LINK: TIME SIMULATION RESULTS

( f \ Nearest Neighbor Quantum Ising Model
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CLASSICAL LINK: TIME SIMULATION RESULTS
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QUANTUM LINK: AUX. QUBITS

1 : 4
v 5 5o
‘-'«‘ "‘
/ 5
‘0 ’
32
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Interaction
interface [

Pirsa: 23060030

Page 32/56

36



QUANTUM LINK: AUX. QUBITS

Y
Interaction
interface |
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QUANTUM LINK: AUX. QUBITS

:
Interaction
interface [
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QUANTUM LINK: AUX. QUBITS

%=

Iy
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QUANTUM LINK: TIME EVOLUTION RESULTS
All-to-all Ising-like model

+1, p=0.25
i, p=05
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QUANTUM LINK: TIME EVOLUTION RESULTS

All-to-all Ising-like model
+1, p=025

=41, p = 0.25 Q. Channel C. Channel] === 4+ MF Ind.
il p=05
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THE ROLE OF OPTIMAL AUXILIARY ENCODING

2
All-to-all Ising-like model e=1- |(U;r(dt)U(dt))| ~ var(H - Hf)dtz
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®

FRAGMENT-
INITIALIZED VQE

e Initialization Scheme

+ Comparison to Random
Initialization
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VARIATIONAL QUANTUM EIGENSOLVER

VQE is a hybrid algorithm designed to find the ground state of a Hamiltonian.

|0) |W ()

)
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VARIATIONAL QUANTUM EIGENSOLVER

VQE is a hybrid algorithm designed to find the ground state of a Hamiltonian.

: aL
10) W(60)) Wi Rk XY

)

L=(Y(O)H|¥Y(6)) - Eq

Classical Optimization i
Algorithm
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FRAGMENT-INITIALIZED VQE

Fragment the full PQC into smaller
circuits with overlapping registers:

41—
= H RH
33— L H
Qo= 41 MM
s =11
d6=—
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FRAGMENT-INITIALIZED VQE

Fragment the full PQC into smaller
circuits with overlapping registers:

41—
= H R R H HF
B3 A A A
Qe H M M UM KM
‘e gl ml ml 'ml ml g
6=

Loss function for a fragmented PQC:

Z]Us*sj Zhs1 ZZ;), i

(i,j)Yef ief iEf jEE

(Hf) =
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FRAGMENT-INITIALIZED VQE

D,
18| =
' A ( A 4 ™ ) ) ()
[0) _| U'-"cu}d [ ( —
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| _( %, ’_(; J \. J \ J \ J \ y, \ / I(¢k) —
R

Pirsa: 23060030 Page 44/56



FRAGMENT-INITIALIZED VQE

Before solving the full problem...
Pre-train the brickwork portion of
circuit using fragmented method

o=l H =~ — -

10) —{Us, | B
16| |18 (6. |ue| |Ue) (e,

10) —{Us, o} —

IO) —1 USO’J._‘L J \ J \ J \_ p, \_ J \ ;—-

Initialize the full circuit with pre-trained
parameters (for brickwork portion) and
small random values for remaining layers
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FRAGMENT-INITIALIZED VQE

PSEUDO CODE:
1. Randomly initialize fragmented PQCs
2. Initialize mean field measurements to be zero
3. In loop (until parameters converge):
For each fragmented circuit:

i. Initialize any overlapping parameters with the current values from
neighboring circuit.

ii. Update the circuit’s parameters using mean-field modified loss.

iii. Update mean field measurements of the circuit’s system qubits.

53
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FRAGMENT-INITIALIZED VQE

PSEUDO CODE:
1. Randomly initialize fragmented PQCs
2. Initialize mean field measurements to be zero
3. In loop (until parameters converge):
For each fragmented circuit:

i. Initialize any overlapping parameters with the current values from
neighboring circuit.

ii. Update the circuit’s parameters using mean-field modified loss.
iii. Update mean field measurements of the circuit’s system qubits.

One optimization iteration complete.

53
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BATCHED PRE-TRAINING

gre—
® = 1. Generate T random partitions (with some maximum
& e = fragment size and fixed number of auxiliary qubits
® 7 * Set maximum fragment size M and number of
P 9 auxiliary qubits N, to remain classically tractable
L . .. .
® bl s 2. Train each set of partitioned circuits
L : L
@ . S * Use classical resources to do this in parallel
® ° ® 3. Estimate the loss for each set of optimal parameters
® S ry * Use quantum resources
N’
4. Select set of parameters with minimum loss to perform
® P p
final optimization
\ J
N

T random partitions
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BATCHED PRE-TRAINING

—
® ° 1. Generate T random partitions (with some maximum
® = e fragment size and fixed number of auxiliary qubits
& o * Set maximum fragment size M and number of
P 9 auxiliary qubits N, to remain classically tractable
L . o L
® b . 2. Train each set of partitioned circuits
o . o
[ ) ~— » Use classical resources to do this in parallel
— @ o B
& ° ® 3. Estimate the loss for each set of optimal parameters
® S ry * Use quantum resources
N’
® 4. Select set of parameters with minimum loss to perform
final optimization
\ % J * Use quantum and classical resources

T random partitions
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All-to-all Ising-like model

h=0
+1., p =0.25
hii= A1, p =0.25
0, p =0.5
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FRAGMENT-INITIALIZED VQE

N=6 N=9 N=12 N =15
d 4l s 0% @& oo, o B - i1
\l".-':-‘o'ﬁ.:-‘.?&.:': Sia et e e | | bl il B el L

g e —— e
- - - e ———— ——— — il

- = =

0 100 200 300 400 500 0 100 200 300 400 500 0O 100 200 300 400 500 0 100 200 300 400 500
Random .J;; Index Random .J;; Index Random .J;; Index

Random .J;; Index

Fragment Initialized === Geometric Mean (Frag.) — - Arithmetic Mean (Frag.)

¢ Randomly Initialized ==« Geometric Mean (Rand.)  ==+= Arithmetic Mean (Rand.)
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All-to-all Ising-like model

h=0
+1
=gl
0,

p =025
p = 0.25
p =0.5

,-:'\10_3 | -%-'.". -‘vl bk ."_. d':-’_ Te ot Ze *s " -
ey _W | Rrogniiteomiy | | (a3t s03e we; cone
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FRAGMENT-INITIALIZED VQE

=1 41 a o slte 4 ae n n
10 \3;.‘,.‘.1 -.‘. & i b - 3

1077 --.----------- T L L e e -"---“---‘--“- B
1079 4 | o i, O o] R oy i
I I I I 1 1 I I 1 I I 1 I 1 I I 1 1 1 1 I I T I
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Random .J;; Index Random .J;; Index Random .J;; Index Random .J;; Index
Fragment Initialized ==+ Geometric Mean (Frag.) —-= Arithmetic Mean (Frag.)

¢ Randomly Initialized ==« Geometric Mean (Rand.)  ==+= Arithmetic Mean (Rand.)

Batch size: T = 10
Max. qubits / fragment: M = 3
Auxiliary qubits: N, = 2
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FRAGMENT-INITIALIZED VQE
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All-to-all Ising-like model N =112 N=15
. 2ol B
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Batch size: T = 10
Max. qubits / fragment: M = 3
Auxiliary qubits: N, = 2
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Random J;; Index

Fragment Initialized
e Randomly Initialized

Random J;; Index

=== Geometric Mean (Frag.)
= =+ Geometric Mean (Rand.)

Random J;; Index

Random .J;; Index

—-- Arithmetic Mean (Frag.)
== Arithmetic Mean (Rand.)
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All-to-all Ising-like model

h=20
+1 p = 0.25
fi= 51, p =0.25
377 p =0.5

FRAGMENT-INITIALIZED VQE

61
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Batch size: T = 10
Max. qubits / fragment: M = 3
Auxiliary qubits: N, = 2

Pirsa: 23060030
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Fraction where

€f (1 ite-r,f) > €r (1 'i.ter,r)
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Case by case comparison
to random initialization:

0175

N8N
T

Il

=L ST e

Geometric Mean of €(Niter)

DEPENDENCE ON BATCH SIZE T

Performance on average:

—
5
L o]

10-2

107"
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IN SUMMARY...

* Separate quantum simulators can be linked via
limited communication channels
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IN SUMMARY...

* Separate quantum simulators can be linked via
limited communication channels

* Performance is steadily increased with mean-field
corrective terms and auxiliary qubits

+ Allowing quantum information transfer — even if
limited - can further improve performance

* Using the same fragmented framework, a PQC can
be pre-trained using a piece-wise approach that is
classically implemented
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