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Simulating physics with computers

Simulating Physics with Computers

Richard P. Feynman

Department of Physics, California Institute of Technology, Pasadena, California 91107 M ot iV a te d an d S h a pe d
Received May 7, 1981 s
the field of quantum
it computing which

On the program it says this is a keynote speech—and I don’t know . .
what a keynote speech is. I do not intend in any way to suggest what should ho pes to revol utl onilze
be in this meeting as a keynote of the subjects or anything like that. I have
my own things to say and to talk about and there’s no implication that

anybody needs to talk about the same thing or anything like it. So what I CO m pUtatIO n th rO U g h

want to talk about is what Mike Dertouzos suggested that nobody would ) :
talk about. I want to talk about the problem of simulating physics with
computers and [ mean that in a specific way which I am going to explain. exp I O ltatlon Of
The reason for doing this is something that I learned about from Ed .
Fredkin, and my entire interest in the subject has been inspired by him. It q ua nt u m mec h a n I Ca |
has to do with learning something about the possibilities of computers, and
also something about possibilities in physics. If we suppose that we know all eﬁ:e CtS
the physical laws perfectly, of course we don’t have to pay any attention to
computers, It's interesting anyway to entertain oneself with the idea that
we've got something to learn about physical laws; and if I take a relaxed
view here (after all I'm here and not at home) I'll admit that we don't
understand everything.
The first question is, What kind of computer are we going to use to
simulate physics? Computer theory has been developed to a point where it
realizes that it doesn’t make any difference; when you get to a universal
computer, it doesn’t matter how it's manufactured, how it’s actually made.
Therefore my question is, Can physics be simulated by a universal com-
puter? I would like to have the elements of this computer locally intercon-
nected, and therefore sort of think about cellular automata as an example
(but I don’t want to force it). But 1 do want something involved with the
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Simulating physics with computers

Simulating Physics with Computers Motivated the field

Richard P. Feynman .
of quantum computing

5. CAN QUANTUM SYSTEMS BE PROBABILISTICALLY
SIMULATED BY A CLASSICAL COMPUTER?

Now the next question that I would like to bring up is, of course, the
interesting one, i.e., Can a quantum system be probabilistically simulated by

a classical (probabilistic, I'd assume) universal computer? In other words, a el 4
computer which will give the same probabilitics as the quantum system Th|S IS a” St|” true
does. If you take the computer to be the classical kind I've described so far, .
(not the quantum kind described in the last section) and there're no changes tod ay an dis
in any laws, and there’s no hocus-pocus, the answer is certainly, No! This is *
called the hidden-variable problem: it is impossible to represent the results fundamental Iy
of quantum mechanics with a classical universal device. To learn a little bit . .
about it, I say let us try to put the quantum equations in a form as close as linked to the notion
Feynman concludes: of quantum speed-
the great difficulty. The only difference between a probabilistic classical .
world and the equations of the quantum world is that somehow or other it up Iin gua ntum
appears as if the probabilities would have to go negative, and that we do not .
know, as far as I know, how to simulate. Okay, that’s the fundamerntal com pUtI ng 3

problem. I don’t know the answer to it, but I wanted to explain that if I try
my best to make the equations look as near as possible to what would be
imitable by a classical probabilistic computer, 1 get into trouble.
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We can’t simulate quantum systems exactly using
probability. Can we do it approximately with
language models?



Natural language processing

« Branch of computer science, linguistics, and machine learning concerned
with giving computers the ability to process text and spoken words in a
similar way humans do it.

« Machine translation

« Speech recognition

« Sentiment analysis

« Automatic summarization of text

« Text to image/video generation
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ChatGPT

« ChatGPT is a machine learning
model which interacts in a
conversational way

- Dialogue format makes it
possible for ChatGPT to
answer followup questions,
admit its mistakes, challenge
incorrect premises, and reject
iInappropriate requests.

https://fopenai.com/blog/chatgpt/
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{# CBC
Can the new Al tool ChatGPT replace human work? Judge
for yourself

A new artificial intelligence tool using natural language processing has captured the
public's imagination, amassing more than a million...

1 day ago

% Global News -
ChatGPT: Everything to know about the viral,

‘groundbreaking’ Al bot - National | Globalnews.ca -
Users can ask the Al to write essays, poams or scripts, or even translate or summarize \:4

text. ChatGPT can also answer questions on a wide..

21 hours ago

I, CNET
The 5 Best Uses (So Far) for ChatGPT's Al Chatbot ‘ g . |

The naw Al tool ChatGPT has inspired excitement and worry with its ability to instantly
answer complex questions. In the days after its..

1 day ago

73 The Toronto Star

| wrote a story about ChatGPT’s Al. Then | dared it to write a
better one

Like a million or so other artificial intelligence dumb-dumbs who discovered ChatGPT
this week, | couldn't wait to show off the capabilities..
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ChatGPT

- People now believe these W sy i
. . ChatGPT can pass the United States Medical Licensing
models will likely have gt et
1 The rise of the machines? ChatGPT CAN pass US Medical Licensing Exam and the
d ee p teC h n 0 Iog ICa |’ Bar, experts warn - after the Al chatbot received B grade on...

educational, and societal

. . . Firstpost
implications. SNy | |
OpenAl’'s ChatGPT passes Wharton’s MBA Exam, while also "aprr

qualifying for a medical licence in the US

CCount ¢ &

Medical researchers are actually considering using ChatGPT in actual, clinical cases to
assist real doctors. OpenAl's chatbot ChatGPT has been...

5 hours ago

https://fopenai.com/blog/chatgpt/
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Is Mona Lisa smiling? ChatGPT’s take

Pirsa: 23060008

is mona lisa smiling?

The smile of the Mona Lisa has been a subject of much discussion and interpretation over
the years. Leonardo da Vinci's famous portrait depicts a slight smile, which has often been
described as enigmatic or mysterious. It's not an overt, obvious smile, but rather a subtle

expression that has captivated viewers and sparked numerous theories and debates.

The perception of the Mona Lisa's smile can vary from person to person, and different
individuals may interpret it differently. Some see it as a gentle, content smile, while others

perceive it as somewhat ambiguous, with a touch of sadness or even a hint of irony.

Ultimately, the interpretation of the smile is subjective and open to personal perception.
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ChatGPT: is Mona Lisa smiling?

@ I'll do my best to create an ASCII art representation of the Mona Lisa, however, please & &P

keep in mind that it may not be a very detailed or realistic representation. Here is my

attempt:

] Copy code

Please note that this is a very simple and minimal representation of Monalisa, as ASCII art

is not my primary function. It may not be the best representation of Monalisa.
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Language models

» Large language models are based on neural networks

» Neural networks are powerful universal function approximators and can
in principle represent any function if given enough parameters

» |n particular, in NLP these model objects like this:

P(output text|input text) it g
P(English|Spanish) _‘_. S e
P(Spanish) S AY
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Encoder

*\

_J

*

Write a poem about quantum states
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Language models

High-dimensional
vector

hy(write a poem) € R4

ﬁ

Decoder

~

J

* In a world of quantum states,

Where entanglement dictates
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Large Language models

Recurrent neural networks
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Sequence to Sequence Learning with Neural Networks. llya Sutskever, Oriol Vinyals, Quoc V. Le.
https://arxiv.org/abs/1409.3215
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Large Language models

Transformer

Qutput
High-dimensional Probabilitics

vector h,

Softmax

|inear

Add & Norm
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Forward
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Pesmo‘rlal : é Positional
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Embedding Embedding
Inputs Qutputs

(shifted right)

Figure 1: The Transformer - model architecture.

Attention Is All You Need. Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
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How to use these models to
represent physical states?
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Representing states with language models

High-dimensional
vector
hy(write a poem) € R

( \ Replace words/characters with

degrees of freedom of the system
in some computational basis
[re—- Decoder >
a; = spins or measurement
k J outcomes

ap, ay, ..., 0y

Write a poem about quantum states

Input/output is given using some word dictionary = [ word 1, word 2,...,word N] * Input/output is given using some word dictionary = [ spin up, spin down]
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Representing states with language models: Dictionaries

Input/output of a conditional is given using some word dictionary
[ word 1, word 2,...,word M], M =~ 8000

[|O>,|1>,|+),|—),li"),ll)]—the

outcomes of a quantum measurement
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LARGE LANGUAGE MODELS ARE AUTOREGRESSIVE

» The term autoregressive originates from time-series models: observations from the
previous time-steps are used to predict the value at the current time step.

» Consider a probability distribution P(6) = P(0y, 05, . .., 6y),

Pleiiarnan)i= Elal)B(@len)B@slala) R P E(anN|aiioss e ane )

» To specify P in a tabular form requires exponential resources

» To alleviate this exponential issue: parametrize the conditionals

P(o;|o<;) = Py(oi|o<)

> These conditionals are parameterized through large neural networks

» We can represent complex distributions using these models
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Autoregressive models and their tractability advantages

v/ Computing P(6) or the amplitude ¥(o) is efficient given &
v/ Can be exactly sampled efficiently in linear time in N

v/ Can be easily defined in any spatial dimension (e.g. 2d and 3d ) — no
tractability issues (compared to, eg, PEPS)

v/ Their expressive power can be systematically improved
v/ Easy to encode product states and mean-field theories (e.g. Gutzwiller)

v We can impose some symmetries and conservation laws

v/ Advantages remain true for models of the quantum states W¥(6) in any
dimension.

Pirsa: 23060008 Page 19/41



How?

> We introduce a formulation of quantum theory that looks like probability—
make quantum look like ML

> We use generative models, in particular transformers to parametrize
quantum states

> Examples:
> Open quantum system dynamics (today)
» Quantum state tomography

» Quantum circuits
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Quantum states, measurements, and
probability distributions
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How is a quantum state traditionally described?

> A density matrix describes the statistical state of a system in quantum
mechanics. Everything we can possibly know about a quantum system is

encoded in the density matrix.

> A gquantum state is a positive semidefinite, Hermitian operator of trace 1
acting on the state space.

> For one qubit, all the states live in the Bloch sphere.
A

—" y
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How to represent a quantum state with only
probability?
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Measurements: Positive operator-valued measure (POVM)
> Born Rule P (a) =TrpM?® quantum theory <experiment
> POVM elements M = {M@ | a € {1,...,m}}

> Positive semidefinite operators » M =1

(]

Informationally complete POVM @

« The measurement statistics P(a) contains
all of the information about the state. } @

- Relation between p and distribution ®—’ p *—®
P(a) can be inverted @ I

Take a single qubit POVM and make a tensor product @

M — {M(m) ® M(a2) @...M(G’N)}MWQN ,¢,¢,¢
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Graphical notation and inverse
BornRule  P(a) =TrpM* @ =

Informationally completeness <—>this relation can be inverted

Positivization/factorization

p= Z aa, M (@)

a,a’ of the quantum state
C )  — A probability distribution

Tensor product of

single-qubit tensors
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Graphical notation and inverse
BornRule P(a) =TrpM? @ =

Informationally completeness <—>this relation Can be inverted

» Tomograph
p= ToaPla)M® e
a,a’ » Unitary evolution

C D » Schrodinger equation

# = » Linblad equation

» Measurements
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Insight: parametrize statistics of measurements and invert

Instead of parameterizing p, create an P (a) - TI. pMa

autoregressive model of P(a)

- —1
P Z Ta_,;’P (a’) M* Pmodel = E T Prmodel (@) M©
a,a’ a,a

Carrasquilla, Torlai, Melko, Aolita. Reconstructing quantum states with generative models. Nature Machine Intelligence
1, 200 (2019)

Peter Cha, Paul Ginsparg, Felix Wu, Juan Carrasquilla, Peter L. McMahon, Eun-Ah Kim. Attention based quantum
tomography. Mach. Learn.: Sci. Technol. 3 01LTO1 (2022)

J. Carrasquilla, D. Luo, F. Pérez, A. Milsted, B. K. Clark, M. Volkovs, L. Aolita. Probabilistic Simulation of Quantum
Circuits using a deep-learning architecture. Phys. Rev. A 104, 032610 (2021)

D. Luo, Z. Chen, J. Carrasquilla, B.K. Clark. Autoregressive Neural Network for Simulating Open Quantum Systems via a
Probabilistic Formulation. Phys. Rev. Lett. 128, 090501 (2022)
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Insight: parametrize statistics of measurements and invert

VE (a) —b, pM = => Create a neural model of P(a)

Autoregressive models (RNNs
and transformer)

Pmodel a .
(@) 1. Allow for exact sampling

2. Tractable density Piodel (Q)

Pmodel = - L’
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Quantum states represented as probabilities

We go from a “Bloch Body” of quantum states to probability distributions
— points of the standard simplex in high dimensions

Y

T

Set of density matrices

Note that the simplex is too big and general— some distributions do not
correspond to quantum states @
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Learning Ground states from simulated projective measurements (RNN)

a
—0.65 @ leconstructed state ’H J Z O.Z O-Z _I_ h Z O-
-0.704 [
@
-~ & 0.25 4 | . .
¥ o7 1 vz:[, ww N=50 spins. P(a) is a deep (3 layer GRU)
0801 oo | HASLESASEEEEE recurrent neural network language
—0.85 -QI‘ o :(Foo:atfuma;amo . @ —0.50 -4? : | | ; m Od e I :
0 20 40 0 1 20 30 40 50
(o, - o) Synthetic stat (o1-0¢) R tructed stat ey
Co.cr P ynthetic state 10d o econstructed state H=J E O'@O'J
: 0.8 ol . 0.8 s
o . 0.6 ] . 0.6
04 0.4
& 02 & 0.2 \
i pot 0.0 = ' ‘
6 4 A 6 - B _\ _\ _\
-0.4 -0.4 Y
: : . : —0.6 : - : - -0.6 < /
0 2 1 6 0 2 4 6 — ’— H—29

Carrasquilla, Torlai, Melko, Aolita. Nature Machine Intelligence 1, 200 (2019)
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Unitary dynamics
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UNITARY DYNAMICS THROUGH LANGUAGE MODELS

Unitary dynamics

22U = UP UT “ Py(a”) = ZP(a’)Oa’,a”
;
Unitary matrices U

Owar = > Tr(UMSUIMENT L,
a

Probabilistic unitaries: Somewhat
(or quasi-) stochastic matrices

» Probabilistic simulation of quantum circuits using a deep-learning architecture. Carrasquilla, Luo,
Perez, Milstead, Clark, Volkovs, Aolita. PHYSICAL REVIEW A 104, 032610 (2021)
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Dynamics of closed and open quantum systems

Linblad equation

! : Yk
o= Lp=—i[H,p] +Z o (QkaFI: — {p, FLFk})
k

@ Born rule

pla) =) p®)Le =) »(b) (4] + Be)
b b

5 —

A% — Ty (H[N(b),M(a)]) . Unitary dynamics

High-D differential Equation

By S % Ty (2FkN(b)FLM(a) — TR {N® M, }) . Dissipation
k

NG = o (a)T‘;bl Tap = Tr(MgMp) DiLuo, Zhuo Chen, Juan Carrasquilla, and Bryan K. Clark. Phys. Rev. Lett. 128, 090501 (2022)

Pirsa: 23060008
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Integration of the differential equation

Strategy:

- We take inspiration from the trapezoidal rule

 Design an objective function that we optimize with
gradient descent.

. |If the optimization succeeds, the trapezoidal rule is
implemented exactly.

- No data required for optimizing the model—everything is
based on the differential equation

irsa: 23060008 Page 34/41



Quantum dynamics of open quantum systems

Trapezoidal rule:
Suppose that we want to solve the differential equation

y = f(t,y)

The trapezoidal rule is given by the formula

I
Yn+1 = Yn =l §T (f(tn:yn) ol f(tn—l—la yn—|—1))

T = tn_|_1 —tn

We can in principle apply this but we have exponentially many values of .

Our distributions have way too many outcomes to use the rule directly
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Quantum dynamics of open quantum systems

Trapezoidal rule
37 (08 = TLE) pryar(b) = Y (88 +7LE) pi(b) For each component a
b

b

We designed a cost function (sum over a, subtract and take abs, sample)
[ e 1 | .
Samples Y 3 mﬁ_f_:—;:;_f Two models: transformers

> A~PO(t427)

from model

Y [Poceszn)(®) (63 — 7LE) — poey (B) (85 +7L8) ]|,

Requires tractable
Likelihood

If C is optimized to zero perfectly, then the trapezoidal rule is implemented exactly

Di Luo, Zhuo Chen, Juan Carrasquilla, and Bryan K. Clark. Phys. Rev. Lett. 128, 090501 (2022)

Transformers, RNNs, MPS offer this flexibility
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Quantum dynamics of open quantum systems

Fixed point of the dissipative dynamics — dp/dt=0
- Dissipation

P

pla) =Y p(b)Ly =) p(b) (A% + BY)
b b

Unitary dynamics

N,
H@ L S >, pa(b) L3,
ot W po(a)
Expensive in principle Easy for transformer/RNN

Di Luo, Zhuo Chen, Juan Carrasquilla, and Bryan K. Clark. Phys. Rev. Lett. 128, 090501 (2022)
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Quantum dynamics of open quantum systems

Heisenberg model in 2 dimensions

2D Heisenberg model

by 1.0 Y e 5
(b) —= exactjy =y H= E E IwU( ) ( )—i-B E 0'()
0.6 1 \\\ — = exact), =1.8y (1,5) w=2,9,2
+— Transformer |, =y
0.2 4\ 1 r G 1 (1) (v)
s \ —t— Transformer J, = 1.8y ke == 0y = O ZO’k
o) \
e N
B A L f f
] p=Lp=— § A (2kar 0 I‘kl“k})
-0.6 | ~_ - 2
—— s
h-—________—q
"1 0 T T T T T T T
g0 05 10 15 20 25 380 35 40 3)(3 Ta 2D
£ Y Figure 2. The expectation value (o.) as a function of time (a)
for the 1D Heisenberg model with B -~ «, J, — 24, J, 0,
and J, =+ using a time step 7 = 0.0057~". The initial state
is the product state H?Ll |« ({(oy) = —1). (b) for the 3 x 3
Heisenberg model with B = 0, J. =, J, = 1.0, 1.8y, and
J: = 0.9y using a time step time step 7 = 0‘[][]87"1, The
initial state is a product state [[L, [t) ((¢.) = 1). Both
models use periodic boundary conditions. Exact curves are
produced using QuTip [82, 83]. The Transformer has one
encoder layer and 32 hidden dimensions, and is trained using a
g : forward-backward trapezoid method with a sample size N, =
Di Luo, Zhuo Chen, Juan Carrasquilla, and Bryan K. Clark. Phys. Rev. Lett. 128, 090501 (2022) 12000.
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Quantum dynamics of open quantum systems
Quenches in the TFIM with dissipation

06
05 — exact
: ¢  density matrix RBM . V (=) (=) , 9 ()
04 + b 4 POVM Transformer N=1 6 q U bItS H= Z Z 2y i 5 Z %e
=03 t (4,7) k
2 t
0.2 +
01 Te=0l) = 1(0® —ioc®) p=Lo=—ilH,d+3 ”Z-k (2rkpr; St r;rk})
08 k
0.4 : . s
o Steady state simulation ¢ =10
® 02
0.1 Figure 3. Variational steady state solution for a 16-site TFIM
. chain with periodic boundary conditions and V' = 2+ (orange
00 dots). The initial state is a product state [[1, [1) ((0:) =
0.2 1). The Transformer has one encoder layer and 32 hidden
dimensions, and is trained using Adam [79] in 500 iterations
3 i with N, = 12000. Green points are the fixed point solution
T -06 representing the density matrix as an RBM; both the exact
Ly s curve (black line) and density matrix results are digitized from
Ref. 60.
ey 1 2 3 4

aly
RBM from: F. Vicentini, A. Biclla, N. Regnault, and C. Ciuti, Phys. Rev. Lett. 122, 250503 (2019).
Di Luo, Zhuo Chen, Juan Carrasquilla, and Bryan K. Clark. Phys. Rev. Lett. 128, 090501 (2022)
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Benchmark a
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P
-0.44
5 -0.6 1
~0.8 14
iy —— exact ¢ dyn1.32
—— benchmark t  var+dyn.132
~-1.0 T T T T T
1.0 1.2 14 1.6 18

Iy

Figure S6. 3 x 3 Heisenberg model benchmarked with Ref. 8. This system is the same as in Fig. 4 in the main paper. The
exact curve (blue) is generated using QuTiP [2, 3]. The benchmark curve (orange, Ref. 8), is based on an RBM. QOur results
(green and red) are the same as in the main paper. The two numbers in the legend specify the number of layers and hidden
dimensions ng.

(a) o5l — v (b} (c)
i Vi benchmark —0.2 4
5 + 12 3
0.125 ' g 0.3 p z
0.100 phe -0.4 7
itk + 11s = 02 s
o | ¥ o 021 —— axbct 5 — et
£ 0.073 i banchmark | =~ —0.6 1 banchmark
] 12 12
0.050 i e b s
4 18 -0.8 4 18
0.025 4 £ :
4 L1 + L1G
0.000 1 0.0 B -1.0 L
0 2 4 6 n /] 2 4 & u 0 2 4 6 ]
g g g

Figure S7. 8 qubit transverse-fleld Ising model benchmarked with Ref. 9. The system Hamiltonlan is the same as in Fig. 3 in the
main paper but with open boundary condition, with V' - 2 and g shown in the figure. The jump operators are slightly different
from the main paper such that there are two different jump operators with rer = o(*}] and T = ¢'*). The corresponding
dissipation rates are 4’ = 4 and 4v®) = 2. Ref. 9 uses a slightly different convention resulting in a difference in ¢ and « which
we have verified by matching their curves in our convention. The exact curve (blue) is generated using QuTiP (2, 3] and is
superimposed to the figure in Ref. 9 to check for the correctness of the parameters. The benchmark curve (orange) is from
Ref. 9. The two numbers in the legend mean number of layers and hidden dimensions, respectively. We note that while the
neural network is not designed to work for a hidden dimension ngy less than 8, the results presented here are still significantly
better than Ref. 9 for ng < 8.

gainst classical and quantum algorithms

A. Nagy and V. Savona, Phys. Rev. Lett. 122,
250501 (2019).

N. Yoshioka, Y. O. Nakagawa, K. Mitarai, and K. Fujii,
“Variational quantum algorithm for non-equilibrium
steady states,” (2019), arXiv:1908.09836 [quant-ph]
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Conclusions

» We have introduced a probabilistic representation of the quantum state

» Combined with powerful probabilistic models, it allows for simulations of
circuits and open quantum dynamics.

» Good: Optimization problem is relatively easy
> But: requires a lot of samples/tricks to improve variance in the gradients

> Lots of other things to do: architectures to explore (eg neuromorphic, other
ML models), different/more suitable objective functions, implementation of
symmetries, different systems, etc.

> Applications beyond quantum mechanics—how to efficiently solve high-
dimensional probabilistic differential equations with autoregressive neural
networks, eg Chemical Master Equation, other Boltzmmann equations.
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