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From the tabletop
to the Big Bang ASIMEP

Analogue vacuum decay from vacuum initial conditions

Based on work with J. Braden, M. Johnson, H. Peiris, A. Pontzen, S. Weinfurtner lﬁl
On the arXiv soon! 2306.xxxxXx
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Spoilers!

Our three main results:

1. The analogue false vacuum has the same quantum fluctuations as
the relativistic false vacuum (...in the IR)

2. We've identified realistic experimental parameters, and verified with
simulations that this system undergoes relativistic vacuum decay

3. We’ve shown that quantum (rather than thermal) decays are
accessible with this setup
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Plan for this talk

1. What is vacuum decay, and why do we care?
2. How can we simulate vacuum decay in the lab?

3. What theoretical work is needed to exploit these experiments?

Alex Jenkins | alex.jenkins@ucl.ac.uk | 5 June 2023
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false vacuum

Vacuum decay basics

We have a relativistic scalar field,
07— V2 + Vig) =0

* Field escapes from a local minimum
of potential V(¢) to global minimum

V(#)

true vacuum

* Localised “bubbles” of true vacuum

-
expand and collide OO O o

« Inherently quantum-mechanical, G
non-perturbative, non-equilibrium O D O
... very difficult problem! (e e

Hindmarsh+, 2008.09136
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Gravitational-wave
cosmology

(Meta)stability of the
electroweak vacuum
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Quantum tunnelling

QM allows non-relativistic particles to tunnel through a potential barrier V(x)
+00 1
decay rate ~ exp(—B/h)[1 + O(h)], where B = [ dr (Exz + V(x))

Formally, this integral is the action S of a trajectory in imaginary time 7 = 1t

We call it the Euclidean action, B = Sg
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Instanton formalism
By analogy with QM, the decay rate for a field ¢(x, #) is set by Euclidean action

decay rate

~ exp(—=Sg/h)[1 + O(n)]

unit volume

Y

S, = [dr d3x E(jﬂ 5 % V| + V(g) (where 7 = if)

This is an integral over an imaginary-time field solution called an instanton
Infinite degrees of freedom, but can find solutions using symmetry assumptions
Works best for deep barriers — the “thin wall” regime
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What instantons can’t tell us

* What does bubble nucleation look like in real time?
* What happens on dynamical (cosmological) backgrounds?
* Is the symmetry of the instanton solutions broken in practice?

» Are there correlations between multiple bubbles?

Pirvu+, 2109.04496
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Two routes forward

Quantum analogues Lattice simulations
Engineer a system in the lab Use a semiclassical approach
which behaves like a quantum to study bubble nucleation
field undergoing FVD numerically

o
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Plan for this talk

1. What is vacuum decay, and why do we care?
2. How can we simulate vacuum decay in the lab?

3. What theoretical work is needed to exploit these experiments?
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Cold atomic Bose gases

* Highly controllable macroscopic systems with collective quantum behaviour

* Why bosonic?
Atoms undergo Bose-Einstein condensation to form a diffuse, field-like object

 Why cold?
Quantum excitations of energy @ dominate __Comnell. Wieman, et a. — Nobel Prize 2001
over thermal effects when kzT' < Aw PETRINI) LOOWRIEn of 'T:f'?

* Why atomic? -

Can cool and trap atoms and control their interactions
very precisely using laser light and magnetic fields

Why gases?

Low densities mean that the condensate is
large enough to be directly imaged

LA |95 001 B0 L
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Mean-field theory of cold atoms

. Atomic field ¥ = y + Oy consists, of (highly-occupied, classical) condensate y
plus small quantum fluctuations oy

* Condensate wavefunction obeys the Gross-Pitaevskii equation
(AKA nonlinear Schrédinger equation)

* Equation of motion for a non-relativistic scalar field,
with a |l/l|4 potential (no barrier, no tunnelling)

 How do we get cosmology from this??

NASA, Cold Atom Lab
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Spectrum of the Hamiltonian

103
« On small scales, reduces to —— Gross-Pitaevskii
Schrédinger equation, and we 102 { —** Klein-Gordon = (£k)*/2 -
get non-relativistic excitations — " Nonrelativistic o
10 it
~ 2 3
w(k) ~ k“/(2m) % -
: 3
* On large scales, nonlinear S
interaction gives rise to
massless, relativistic phonons 10-2
Ct)(k) s Ck 10_3 TR LR AL PR R FR B LY LELILILEA] EP RRLLI I
0 s = 1008 0 8 (R0 16 102
¢k
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How do we get a potential?

1.4
» Consider two identical BECs o
with an inter-species coupling v 10 e
> /
» Study the relative and total modes, é’:« 0.8 - /’ \\\
61}}1 — 6][/\/1 =t 6[/72 § 6.6 TV I, \\ TV
= \ / \ ‘
* The relative phonons have a cosine i /’ \ ,’I
potential due to the interaction v 0.27, \\\ Ji e \\\ 3
Ol ISR A . i 0
00- 05 10 150 820
v/ (mpo)
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How do we get a false vacuum?

» Rapid oscillations of the coupling v 1.4
stabilise the false vacuum

» Analogous to a pendulum with an
oscillating pivot point

MakeAGIF.com
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Spectrum of the Hamiltonian (unstable)

Relative modes .
1 — - Tachyonic = (gk) /2 ./

] == Nonrelativistic ./

» First consider constant coupling v

* Relative phonons are tachyonic
(reflecting the instability)

10 10 = 0w 108 10! 102
&k
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Spectrum of the Hamiltonian (metastable)

Relative modes

* Now switch on the modulated 10° 3| —.. Kieoin-Gordon | = (6k)%/2 7
COUleng 1 ==+ Nonrelativistic 7

e Gives the relative phonons an
effective mass, set by the false
vacuum potential barrier

Fiwy, /mc?

* These modes behave like those
of a massive Klein-Gordon field
on large scales

10+ 10 = 10 10° 10? 102
&k
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Plan for this talk

1. What is vacuum decay, and why do we care?
2. How can we simulate vacuum decay in the lab?

3. What theoretical work is needed to exploit these experiments?
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BEC parameters

* Our main goal is to maximise the characteristic
temperature scale,
M, 2N

Tf - 4 S

v

m kB
(...subject to experimental/theoretical constraints)

« This makes it easier to achieve T' < T, and thus
quantum rather than thermal decays

» Once T;, is fixed, we can vary the decay rate via
the dimensionless number density n

Alex Jenkins | alex.jenkins@ucl.ac.uk | 5 June 2023 16/26
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BEC parameters

* Potassium-41

Spin states | F,my) = | 1,0),]1, + 1)

Use Feshbach resonance near B = 675.26 G

L ~ 130 um effective 1D box trap

Between N ~ 8000 and ~ 30,000 atoms

Trapping freq. between w, /27 ~ 4 kHz and
~ 15kHz

X
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Semiclassical lattice simulations

* |nstantons evolve from “classical”
initial state via non-classical paths

Instanton

» Opposite approach: sample initial
state (inc. quantum fluctuations),
then evolve forward classically

Non-classical,
imaginary-time path

Homogeneous state

» Used in inflation/preheating sims,
also quantum optics/atomic
physics (“truncated Wigner
approximation”)

Lattice simulations

Classical, real-time path

* Aim is not to replace the
experiments, but to guide our
understanding

Alex Jenkins | alex.jenkins@ucl.ac.uk | 5 June 2023 18/26
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Semiclassical lattice simulations (1D)

Spinodal transition (no potential barrier) Bubble nucleation (potential barrier)

cos(¢/ o) cos(¢/wo)
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Initial conditions

60

* |If we're putting all of the “quantum-
ness” into the initial conditions, we’d
better make sure they’re robust

50

40

* Most simulations have used white noise
(only valid for a non-interacting BEC) =30

* Instead we use Bogoliubov theory to 20
find power spectra,

P k) = (| PP | Q) *

Alex Jenkins | alex.jenkins@ucl.ac.uk | 5 June 2023
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Initial fluctuations in the false vacuum

* We recover the expected 10 ;

Klein-Gordon spectrum in the IR

* Relativistic analogy works at the
level of the quantum fluctuations,
not just the classical equations
of motion

» Additional power on small scales |1 _ Relative modes N\
due to “shot noise” —excitations e \
of individual atoms 1| el A I \
10ee s al0mes 8 illims 8 100 101 102
¢k
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Bubble nucleation rates

ot

S
I

15 =—— n=25 —
A=20 =——— =30 =———pn=
\

-

S

I
B
=

* Run large ensemble of sims, :
count how many haven't [0
decayed as a function of time 3

* We expect exponential decay,
Pr(survive) ~ exp(—17)

(survive)

|

i
p—t
|

o Study decay rate I as a function A&
of condensate number density n
(larger 1, smaller fluctuations, ., <
slower decays) 0 100 200 300 400 500

et/ &
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Bubble nucleation rates

* Recover expected linear
scaling, logl" o — 71

* White noise leads to faster
decays than vacuum, even -
though there is less fluctuation
power

* White noise is an excited state

» Important to get these details 107 5

+ Vacuum fluctuations
+  White-noise fluctuations

+

right for reliable predictions
10
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Finite-temperature decay rates

* Real experiment will inevitably be
at non-zero temperature

* How high can this be before we
deviate from the zero-temperature
rate?

)

* Answer: for our parameters, we
need 7' < 18nK

Pr(survive

0T 5

» Easily accessible with
experiments!

0 100 200 300 400 500

ct/€
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Some open problems

* Boundary effects. Real experiment has an edge —
what effect does this have on bubble nucleation?

* Renormalisation. Bare parameters are modified by
fluctuations — need to account for this to make
reliable predictions / compare with instantons

* Parametric resonance. Modulated coupling causes
instabilities on small scales — expect this to be
damped in practice, but how?
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Summary

» Vacuum decay is a ubiquitous but poorly-understood process in cosmology
* Quantum analogues will enable the first empirical tests of this process

» We’'re using lattice simulations to build understanding of these analogues,
and have shown they can simulate quantum, relativistic bubble nucleation

Thanks for listening!
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