Title: Dissipative Quantum Gibbs Sampling
Speakers. Daniel Zhang

Series. Perimeter Institute Quantum Discussions
Date: May 31, 2023 - 11:00 AM

URL.: https://pirsa.org/23050158

Abstract:

Systems in therma equilibrium a non-zero temperature are described by their Gibbs state. For classical many-body systems, the
Metropolis-Hastings algorithm gives a Markov process with a local update rule that samples from the Gibbs distribution. For quantum systems,
sampling from the Gibbs state is significantly more challenging. Many algorithms have been proposed, but these are more complex than the ssmple
local update rule of classical Metropolis sampling, requiring non-trivial quantum algorithms such as phase estimation as a subroutine.

Here, we show that a dissipative quantum algorithm with a simple, local update rule is able to sample from the quantum Gibbs state. In contrast to
the classical case, the quantum Gibbs state is not generated by converging to the fixed point of a Markov process, but by the states generated at the
stopping time of a conditionally stopped process. This gives a new answer to the long-sought-after quantum analogue of Metropolis sampling.
Compared to previous quantum Gibbs sampling algorithms, the local update rule of the process has a simple implementation, which may make it
more amenable to near-term implementation on suitable quantum hardware. We also show how this can be used to estimate partition functions using
the stopping statistics of an ensemble of runs of the dissipative Gibbs sampler. This dissipative Gibbs sampler works for arbitrary quantum
Hamiltonians, without any assumptions on or knowledge of its properties, and comes with certifiable precision and run-time bounds.

Thistalk is based on 2304.04526, completed in collaboration with Jan-L ukas Bosse and Toby Cubitt.

Zoom Link: https://pitp.zoom.us/j/967809453412pwd=NG9SUjE4SkVia3V qazNX UFNUamhRdz09

Pirsa: 23050158 Page 1/29

Outline:

1. Background & Introduction
2. The Algorithm

3. Bonus: Partition Function Estimation

% PHASECRAFT

e

Pirsa: 23050158 Page 2/29

The Classical Case:

For a classical statistical mechanical many body system, Hamiltonian H(x) is a scalar function of the many-

body state x = (x;) (e.g. a list of spins).

The Boltzmann distribution:

—PH(x)

e

Pr(x) = ——— Z = E e PHE)
£ Z g

This is already #P-hard. Quantum case, expected to be even harder

Uses: Gibbs distributions have applications in machine learning (Boltzmann machines), Markov chain Monte
Carlo methods, optimisation...

X PHASECRAFT

e

Pirsa: 23050158 Page 3/29

Metropolis-Hastings:

1. Starting from arbitrary x, propose x’ from symmetric proposal distribution g(x’| x), e.g. flip
randomly chosen X;.

2. Compute p = e PHE) j=PHX)
3. Accept x’ with probability min(p,1).

« \MIH generates a Markov chain whose stationary distribution is the Gibbs distribution. That is, once
the Markov chain has converged, the states it generates will be distributed according to Gibbs.

« Note, if H(x) is local, then computing p = e P /e=PH® s |ocal. Thus the update rule and
transition probabilities of \VIH are local.

% PHASECRAFT

o

Pirsa: 23050158 Page 4/29

The Quantum Case:

MH required evaluation of H(x), classically this is just an easy function evaluation. The local update

rule is also easy to implement.
Trying to generalise to the quantum case presents two immediate difficulties:

« One needs to evaluate (| H | y), given a single copy of |). This requires an expensive algorithm
such as quantum phase estimation.

« One needs to decide whether to accept a proposed state |y’) or revert to the original |y). However,
QPE projects onto an energy eigenstate. It's not obvious how to do this!

Original quantum metropolis algorithm [Temme, rne, Vollbrecht, Poulin, Verstraete | solves
second issue (with Marriott-Watrous rewinding). Still, requires running complex quantum circuit (for
QFE):

% PHASECRAFT

T

Pirsa: 23050158 Page 5/29

Many subsequent works (too many to list!), falling into a few categories:

Method: Requirements:

Grover/related modern quantum algorithm techniques applied to

: : . L , global t ircuits.
guantum metropolis sampling (polynomial speedups) SHeErplRRE: QSN BITEHD

Imaginary time evolution methods Large, global quantum circuits.
Variational approaches (QAOA, quantum Boltzmann machines, Heuristic (requires ansatz), non-trivial classical optimisation
variational ITE...) over quantum circuits.

s = > : : Large supply of fresh ancilla, simulation of time evolution of
Emulated thermalisation via coupling to thermal bath of ancilla e el

large system-bath Hamiltonian.
Emulated thermalisation via Davies generator (or similar

L lobal t ircuit PE, O tor Fouri
Lindbladian), quantum Markov semigroup whose fixed point is e AL Rl g0l el pitd el

Transform...)

the Gibbs state: BAp st
€. 06T PG
Approach taken by [Chen, Kastoryano, Branddo,
Gilyén ‘23], current best dependence of runtime on e
“= ; - % PHASECRAFT
precision (which we also achieve). See also there for g

comprehensive review of existing methods!

Pirsa: 23050158 Page 6/29

Method:

Grover/related modern quantum algorithm techniques applied to
guantum metropolis sampling (polynomial speedups)

Many of these existing methods have a runtime
which depends on the mixing time of a Markov
chain, which is general difficult to determine (no
closed form expressions), apart from in some
specialised systems (e.g. commuting case)

Emulated thermalisation via coupling to thermal bath of ancilla

Emulated thermalisation via Davies generator (or similar
Lindbladian), quantum Markov semigroup whose fixed point is

the Gibbs state: s
e? ' = pg

% PHASECRAFT

Pirsa: 23050158 Page 7/29

Our approach for Gibbs sampling comes from the same family of algorithms introduced
recently in | it '23] for ground state sampling - the Dissipative Quantum Eigensolver.

It inherits some desirable features:

« Each step in the algorithm consists of performing weak measurements of local terms

in the Hamiltonian, and then resampling based on the outcome.

* Instead of running a quantum Markov chain until it converges to its fixed point, a
probabilistic stopping rule conditioned on the measurement outcomes is used. This

admits an explicit computation of the expected runtime of the algorithm.

o

* PHASECRAFT

Pirsa: 23050158 Page 8/29

Quantum Instrument:

» Formulation of quantum measurement.

« In the two outcomes case x € {0,1}, measurement via a quantum instrument .¥ is specified by two CP maps

{&, &} such that the sum &, + & is trace preserving and:

&
Outcome probability: p(x|p) = Tr& (p) Post-measurement state: -—ﬂ
Tré . (p)
 Can be described as a quantum channel: p — J(p) = E & () ® |x){(x]
X
followed by projective measurement on classical register. classical register
':‘iq:-:,::-:" PHASECRAFT

Pirsa: 23050158 Page 9/29

Dissipative Gibbs Sampler

First, the most general form of the algorithm:

Algorithm (Dissipative Gibbs Sampler): for a local Hamiltonian H = Z h; , define the quantum instrument:

i=1
&o(p) = KpK, &1(p) = (1 = Tr(KpK))p,
where K is a Hermitian operator (K* <) and ||K — f(H)|| < € for some injective function f.

Let O < r, < 1 be a set of probabilities, n = 0,1,2,... .

The DGS algorithm consists of successively applying instrument {%’0, %’1}, starting from an initial state p, and

after a run of n zeros, stopping with probability r,, or continuing running with probability 1 - .

We will show that by choosing the biased coins {7, } appropriately, and the operator K, we can sample from the
Gibbs state with the promised properties (precision, local implementation efc).

o

% PHASECRAFT

Pirsa: 23050158 Page 10/29

Dissipative Gibbs Sampler

Pirsa: 23050158

&o(p) = KpK, & (p) =1 —Tr(KpK))p,

|

If the “wrong” outcome 1 is obtained, resample the entire state to the initial state py,

In practice we will take this to be the maximally mixed state p, = B .

Our strategy will be first to derive expected output states and runtimes of the DGS
algorithm for general K, {r,}, before specialising to the ones of interest.

PHASECRAFT

Page 11/29

Expected Output State:

What is the expected output state [£[p,] at the stopping time 7 of the DGS algorithm?

Warm-up: a fair coin is tossed repeatedly until five heads occurs? What is the expected
number E of tosses?

1 1 1 1 1 1
E-——(E+tDt (E+2DT (E+t3)t A(ETD+ (BT
2() 4() 8() 16() 32() 32()

i Hi HHT. . HHHT. .. HHHHT... HHHHH

= E = 62.

% PHASECRAFT

o

Pirsa: 23050158 Page 12/29

Expected Output State:

Pirsa: 23050158

tr&o(po)
£0 (e) Efps] =rop0 + (1 —10) (1 = ﬁ Elp-]
(1 = 'J"[)} 1- z
T ’ - Eo(po) 3 tr&o(po) tr&F(po)
(1 - 7o) Efelen) i s Uik A henl=al o i e Elpy]
tr pp
E3(; tr£2(tr 3
o J . g et 0 (o) _ tr&g (o) Elp-]
=00 o g tr pg tr pg tr pg
U!E(‘J!
tr&olpo) + ...
= e trE”(p;]} i i
| (L=m) (1 tZolo0)) i?" R, B0 | gy,]i . (tr Epy) tr sg“(pg,})
£2 == ndln = T n+l | T, = 5
e Ti)%&'ﬁ% o tr pg o tr pg tr po
_ 1. _folpo) l
1k 1: tr&olpo) S&(pn) i
tr£3(po) A i
) tré&y(on)
T ' (1 i (1 = ter(p(',)) R = 1-r
2 n]
e
(1 - rg) 2y le0) j=0
5 r"u(.‘)ﬂ)
L |
n=2 tr £5 (po) £3(p0) Pl-r
: tr £ (po) i

PHASECRAFT

Page 13/29

Expected Output State:

What is the expected output state [£[p,| at the stopping time 7 of the DGS algorithm?

Warm-up: a fair coin is tossed repeatedly until five heads occurs? What is the expected
number E of tosses?

1 1 1 1 1 1
E-—_(EtDHt (E+2D+ (E+t3)t A(EtH+—(ELHT
2() 4() 8() 16() 32() 32()

Tiss Hi. HHT: .. HHHT. .. HHHHT .. HHHHH

= E = 62.

“® PHASECRAFT

o

Pirsa: 23050158 Page 14/29

Expected Output State:

Lemma: The expected output state of the DGS algorithm is given by:

E:io h an %8(p O)

Elp,] = ——
Z n=0 F anTr %8(/90)

n—1
where R, = H(l — rj).

j=0

N.B. The normalisations by Tr(&7;(p,)) drop out in the expected state! It’s feasible then if we tune the r, (and

hence R,) appropriately, and K in &, to some appropriate function of H, that we will generate an expected state
close to the Gibbs state.

o

® PHASECRAFT

Pirsa: 23050158 Page 15/29

Expected Runtime:

Before moving on, note that the expected runtime [E[7] of the DGS algorithm can be computed in exactly the same way.

Replace each leaf on the n'* level on the LEFT by n + 1 (the
el number of steps required to reach there).

{1 =) (1—

Po

o

(1-ry)—J' "“"fo“
n=0: mlp,} Replace each leaf on the n” level on the RIGHT by E[7] + n + 1.
tl-’nh‘)nl
1_ ?‘1 (1 'trll:bul!p:]];
/) R D) : Now, sum over all the leaves, weighted by the probability of
tliuf.ﬂu) .
il reaching them:
il l r&olpo) f'ulF['fl)
tré n P
(1 —rg] 1- trii [ﬁ::) tr gn() tI‘gﬂ'() trgn+1()
tr () i Efr] = Y (n+1)raRa— 2 4 (Efr] +n+1 ALY
/ mm '20)' [7] ;}(”)r & po (E[r]+n+1)Rnia s o
?r ())
n=z: L:F.,?ﬂn £ ‘lpnl

tréy (F’U)

2o BaTr EGpo)

Elr] Z TrE&%(po) .aﬁ"‘
nnr 0\~0 :"":-
=0 -: :-PHASECRAFT

Pirsa: 23050158 Page 16/29

n—1

Towards the Gibbs state... Recall R, = [] (1 = 7 and 8p) = Kok

i=1

E,c:,:g ran g6(/-00) Z:D:U ranKgn ‘ cosh AK
[E[pf] T 0 %Ln . [E[pr] — 0 In ‘ {E[pr] e T
2o R Tr & (o) . 2m LI Tk - Tr cosh AK
;LG
N.B. it is not hard to show that it is possible to choose coin-flip probabilities 0 < r,, < 1 such that r, R, Y is
n)!
. pe . . g iEn
satisfied. Solving recursively: o o
fon n—-1_ 4%
L= 2o 0
Then(0 <r, < lifandonlyif r, < = Intuitively clear that runtime is minimised if r,, (which are monotonic in ry)
cos
1
are maximised. Thus choose 1, = 1
cosh A @ﬁ%@PHASECRAFT

Pirsa: 23050158 Page 17/29

Pirsa: 23050158

Why did we make those choices? Let k = E ||2;||, an upper bound on ||H]|.

1

.. € K
Then if we choose K = (1 —e)** ! 1 ——H | and 1 = g : , the expected output state:
K e(1 — ¢)2m-1
2pk
cosh AK e ese
Elp,] = = g e T
TrcoshdK | 4 -2 _1fe Tr(e=PH + e~"¢ ePH)
Tre-r

then we have that:

IE[p,] — pgll, = Oe™).

The DGS algorithm produces a state close to the Gibbs state! “Cosh is close to the exponential

PHASECRAFT

Page 18/29

Note:
- InK = (1 —¢e)* (1 — eH/x), the prefactor (1 — €)*"~! is arbitrary at this stage, as long as it is < 1.

 This K is also used in the Dissipative Quantum Eigensolver [Cubitt ‘23]; in that context it is important

that K is an AGSP (Approximate Ground State Projector), originally introduced for proving area-laws in

many body systems in

 For us, we're just using the fact that K is linear (injective?) in H, and that it is Hermitian and obeys

K? <1, so that it defines a good quantum instrument/measurement.

« Importantly: implementing &,(p) = KpK requires global measurements. We want to upgrade this to only

requiring local measurements.

o

X PHASECRAFT

Pirsa: 23050158 Page 19/29

I 3

Lemma | itt '23]: Let; = :
K= H((l —o)l + gxiki)H((l —)l + exk;)
i=1 I=m
e L — i/l 1A
et R N
; - K=", K Zu |
then: :

K’ — K|| = O(e*m?).

K’ corresponds to weak-measuring local terms of the Hamiltonian in a prescribed order, and
approximates the K from before!

o

% PHASECRAFT

Pirsa: 23050158 Page 20/29

Running the DGS algorithm with &(p) = K'pK' will generate a state close to the Gibbs state of a perturbed

Hamiltonian H":

IELp,] = potH, = Oe ™),
where the perturbed Hamiltonian H' obeys:
|H — H|| = O(em?x).
This is because, using the previous Lemma, we may write:
K=(1-¢e*(1-eH/x)

i.e. mimicking the form of K = (1 — €)*™ (1 — eH/k) from before, and apply the same arguments as before.

o

% PHASECRAFT

Pirsa: 23050158 Page 21/29

tells us that if two Hamiltonians are close, then so are their Gibbs states:
If ||H' — H|| = O(e¢*m?x), then:

lpc(H) — p(H) ||, = O(ﬁe’fmz)-

Using the triangle inequality:

IELp,] — pEDIl, = O(e™%) + O(Bexm?)

Much smaller!

o

% PHASECRAFT

Pirsa: 23050158 Page 22/29

So we're done!

Theorem (Dissipative Gibbs Sampler): for a local Hamiltonian H = Z h; , define the quantum instrument:
i=1

&o(p) = KpK, &(p) = (1 = T(KpK))p,

Where :

i ‘ 1 = hil Il nh I
K= H((l —ol+ ex,.k,.)H((l -l tek) k=—— 1, K= K = Z||h I

i=1 i=m
. 112"
¢ (zn)'

—Z L
=0 "02)1

andr, =

Successively apply instrument { &, &, }, starting from an initial state p, = [/D and after a run of n zeros, stopping with
probability r,, or continuing running with probability 1 — r,.. Then the expected state at the stopping time 7 satisfies:

IELp,] — pcll, = O(Bexm?)

® PHASECRAFT

Pirsa: 23050158 Page 23/29

The Runtime:

Plugging in the 4, K etc into the explicit expression for the DGS algorithm:

T K? cosh(AK)
COSh(l)Tr (K,}) i W 6 2pkm
Elz} = — € v L =pli-aPT
Tr(cosh(4K)) Tr(cosh(4K)) €

» The dependence on precision € is optimal amongst current methods (matches [Chen, Kastoryano, Brandao, Gilyen 23]

Very coarse upper bound

« Overall runtime is hard to compare because of lack of analytic results on mixing times of quantum Markov chains.

« The proof: one ends up bounding infinite series in K?. Recall K = ‘

i=1 i=m

submultiplicativity of the operator norm: ||K|| < H(l -€)+e ” "

i=1

Pirsa: 23050158

"[((1 -)l + exk)H((l —)l + exk). Use

[+ (8

o

i)rn: (1 L 16)2'".

% PHASECRAFT

Page 24/29

3. Bonus: Partition Function Estimation

e

% PHASECRAFT

irsa: 23050158 Page 25/29

3. Bonus: Partition Function Estimation

g

% PHASECRAFT

irsa: 23050158 Page 26/29

Obtaining The Partition Function

- For the purposes of simulation, we want to estimate expectation values: Trp® of observables.
 To do so, need to produce multiple samples of the Gibbs state, running the DGS algorithm multiple times.

- |f you keep track of the stopping statistics of the algorithm for the multiple runs, you can obtain an estimate for the

partition function Z = Tre P! for free!

runs

state resets

DelrCm=-DE [] - ,‘Z"(H)‘ = O(Z (H)exm?p),

multiplicative error

* “Run” - running DGS algorithm until the stopping rule tells us to stop.

+ “State Resets” - the number of times the measurement outcome is 1 and we are told to reset to the maximally mixed

state, or we restart the algorithm after obtaining a sample.
& PHASECRAFT

o

Pirsa: 23050158 Page 27/29

The Runtime:

Plugging in the 4, K etc into the explicit expression for the DGS algorithm:

T K? cosh(AK)
COSh(l)Tr (K,}) 4 W 6 2pkm
Elz] = — € 0 K =pl-aPT
Tr(cosh(4K)) Tr(cosh(4K)) €

» The dependence on precision € is optimal amongst current methods (matches [Chen, Kastoryano, Brandao, Gilyen 23

Very coarse upper bound

« Overall runtime is hard to compare because of lack of analytic results on mixing times of quantum Markov chains.

« The proof: one ends up bounding infinite series in K?. Recall K = ‘

i=1 i=m

submultiplicativity of the operator norm: ||K]|| < H(l -€)+e ” "

i=1

Pirsa: 23050158

"[((1 -)l + exk)H((l —)l + exk). Use

“[x(8

o

I ||)rm=(1_m;1€)zm.

“® PHASECRAFT

Page 28/29

B PHASECRAFT
o --::::.‘

Thanks for listening!

PHASECRAFT.IO

Pirsa: 23050158 Page 29/29

