Title: Measurement Quantum Cellular Automata and Anomalies in Floquet Codes

Speakers: Zhi Li

Series: Perimeter Institute Quantum Discussions

Date: May 17, 2023 - 11:00 AM

URL: https://pirsa.org/23050148

Abstract: We investigate the evolution of quantum information under Pauli measurement circuits. We focus on the case of one- and two-dimensional systems, which are relevant to the recently introduced Floquet topological codes. We define local reversibility in context of measurement circuits, which allows us to treat finite depth measurement circuits on a similar footing to finite depth unitary circuits. In contrast to the unitary case, a finite depth locally reversible measurement sequence can implement a translation in one dimension. A locally reversible measurement sequence in two dimensions may also induce a flow of logical information along the boundary. We introduce "measurement quantum cellular automata" which unifies these ideas and define an index in one dimension to characterize the flow of logical operators. We find a Z_2 bulk invariant for Floquet topological codes which indicates an obstruction to having a trivial boundary. We prove that the Hastings-Haah honeycomb code belong to a class with such obstruction, which means that any boundary must have either non-local dynamics, period doubled, or admits boundary flow of quantum information.

Zoom Link: https://pitp.zoom.us/j/96083249406?pwd=MnhYbTEyU05ybVdyUlE3UGZrdEhPdz09

Measurement Quantum Cellular Automata and Anomalies in Floquet Codes

Zhi Li May 17th, Perimeter Institute

Ref: 2304.01277 with David Aasen, Jeongwan Haah, Roger Mong

A puzzle in Floquet Code

- Fault tolerant quantum memory by periodic measurement
- toric code, 2 logical qubits on torus
- on plane
 - static toric code: gapped boundary
 - Floquet code: no way?

Measure XX on red edges

Measure YY on green edges

Measure ZZ on blue edges

Outline

- Periodic (Locally) Reversible Measurement Circuits
 - Floquet Codes
- Measurement Quantum Cellular Automata
- Anomalous Boundary of Floquet Codes

Measurements

 $|\psi\rangle \rightarrow \frac{P|\psi\rangle}{\langle\psi|P|\psi\rangle}$ "collapse"

Reversible measurements

Reversible measurements

• Theorem:

no-information via measurement

$\mathbf{\hat{l}}$

well-defined, reversible dynamics of equivalent classes of logical operators

• stabilizer groups: S_1, S_2 logical groups (up to equiv): $C_P(S_1)/S_1, C_P(S_2)/S_2$ dynamics: $C_P(S_1)/S_1 \rightarrow C_P(S_2)/S_2$ $\forall L \in C_P(S_1)$, find $A \in S_1$ s.t. $LA \in C_P(S_2)$, then $[L] \mapsto [LA]$

Periodic Reversible Measurement Circuits

- $S_1 \to S_2 \to \dots \to S_n$
 - each step is reversible
 - periodic: $S_n = S_1$
- Example: shift by measurements

$$\langle X_{2j} \rangle \xrightarrow{1} \langle Z_{2j-1} Z_{2j} \rangle$$

$$\downarrow^{4} \qquad \qquad \downarrow^{2} \\ \langle Z_{2j} Z_{2j+1} \rangle \xleftarrow{3} \langle X_{2j-1} \rangle$$

$$\underbrace{\text{Measure } X_2}_{\text{Measure } Z_1} \qquad \underbrace{Z_1}_{\text{Measure } Z_1 Z_2} Z_1 \equiv Z_2 \xrightarrow{\text{Measure } X_1, X_3}_{\text{Measure } X_1, X_3} \qquad Z_2 \xrightarrow{\text{Measure } Z_2 Z_3}_{\text{Measure } Z_2} Z_2 \equiv Z_3 \xrightarrow{\text{Measure } X_2}_{\text{Measure } X_2} Z_3$$

Floquet Codes

Instantaneous stabilizers

• each step \equiv toric code

Instantaneous logical operators

- "inner": ∏edge along loops
- "outer": ∏(YY or ZZ) along red loops

Dynamics of logical operators:

• period 6, not 3

Quantum Cellular Automata (QCA)

• Def: QCA = unitary & locality preserving

(locality preserving: $U^{\dagger}OU$ always close to O)

finite depth unitary circuits

translation/shift

- 1D index theory
 - essentially, only these two possibilities
 - GNVW index $\in \mathbb{Q}^+$, log(GNVW) ~ number of shifts

Measurement Quantum Cellular Automata

	QCA	MQCA
Operator algebra	⊗ (Pauli algebra)	L/S L: a group of Pauli operators S: normal subgroup of L
Dynamics	$\alpha(O) = U^{\dagger}OU$ U unitary locality preserving	$\alpha: L/S \to L/S$ α automorphism locality preserving
Index theory in 1D	$\log(GNVM) \in \mathbb{Z}$	$Ind^M \in \frac{1}{2}\mathbb{Z}$

Motivation: the algebra of operators does not always factorize

Measurement Quantum Cellular Automata

In 1D:

Measurement Quantum Cellular Automata

• Example 3: half shift

 $L = \{X_i Z_{i+1}\}, S = \{1\}$ MQCA: $X_i Z_{i+1} \to X_{i+1} Z_{i+2}$ $Ind^M = \frac{1}{2}$

• **Theorem:** 1D periodic reversible measurement circuit, viewed as an MQCA, has $Ind^M \in \mathbb{Z}$

MQCA as boundary

• Wen's plaquette model

• Boundary algebra

 $L = \{X_i Z_{i+1}\}, S = \{1\}$

• 3 2D periodic reversible measurement circuit that induces the half shift

MQCA as boundary

• Floquet Code boundary:

 $L = \{Z_{-2}Z_{-1}Z_1Z_2, X_2X_3X_4, \dots\}$

• Dynamics after 3 rounds $Z_{-2}Z_{-1}Z_{1}Z_{2} \rightarrow X_{-4}X_{-3}X_{-2}$ $X_{2}X_{3}X_{4} \rightarrow Z_{-2}Z_{-1}Z_{1}Z_{2}$

•
$$Ind^M = -\frac{1}{2}$$

MQCA as boundary

• **Theorem:** *Ind^M* (mod Z) of the boundary 1D MQCA induced by 2D periodic reversible measurement circuits is independent of the choices of boundaries

• Corollary:

- Bulk-edge correspondence
- \mathbb{Z}_2 anomaly
 - (edge) obstruction for realizing on 1D
 - (bulk) obstruction for trivial boundary

Conclusion

- Periodic (Locally) Reversible Measurement Circuits
 - Floquet Codes
- Measurement Quantum Cellular Automata
 - Index theory
- Bulk-edge correspondence:
 - MQCA as boundary of measurement circuits
 - $Ind^{M} \pmod{\mathbb{Z}}$ is determined by bulk
- Floquet Code has \mathbb{Z}_2 anomaly