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Knot invariants from CS theory

e In 1989, Witten showed that the Jones polynomial comes from
Chern-Simons theory at level k£ with gauge group SU(2)

e Knots are Wilson lines colored by the fundamental rep of SU(2)

e The partition function with a Wilson line inserted coincides with the

Jones polynomial after identifying

271
=e
e R oy
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In 1989, Witten showed that the Jones polynomial comes from
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Jones polynomial after identifying

271
=e
L o

By varying the gauge group and representation, one gets many

different link invariants, known as quantum group invariants
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Khovanov homology

A categorification of the Jones polynomial due to Khovanov (1999)
A link invariant
The first categorification of a link polynomial

Khovanov homology assigns to a link K a collection of bi-graded
vector spaces

Hi = PHY
@]

such that the graded Euler characteristic coincides with the Jones
polynomial:

e )= Z (—l)iqj/Qdim@?-[i’{j

1,JEZ
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Link Homology

e Should be a link invariant

e The Euler characteristic should be a link polynomial invariant
e Known examples:

e Khovanov homology categorifies the Jones polynomial

e Khovanov-Rozansky homology categorifies the quantum group
invariants associated with the fundamental rep of SU(N)

e Knot Floer homology categorifies the Alexander polynomial

e Webster proposed a general categorification of quantum group
invariants (2013)
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The categorification problem

A longstanding problem is to find a construction of link homology
that works uniformly for all Lie algebras

One would also like to find a construction with a physical /geometric
origin

This problem is solved in recent work of Aganagic (2020, 2021)
using homological mirror symmetry

The solution is based on insights from various other authors:
Webster (2013), Auroux (2010), Seidel-Smith (2008),
Ozsvath-Szabo (2004, 2008), Rasmussen (2003),
Gaiotto-Moore-Witten (2015)...
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. Floer theory and the A-model
. Homological link invariants

. An algebraic approach to solving the theory

glyy examples

Slo examples

. Other Lie (super)algebras

. Topological invariance
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The Floer complex

Let (Y,w) be a 2n-dimensional symplectic manifold
A Lagrangian submanifold L is an n-dimensional submanifold of M
siichthat oy =1

Given two Lagrangians Ly and L, one can associate a chain
complex C'F(Lg, L) freely generated by the intersection points of
Lo with L, equipped with a differential @

Originally defined for compact L, but we will see later there is a

generalization for noncompact L
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The Floer differential

e Counts certain pseudo-holomorphic maps 4 from a disk to Y':

Gl = E #M(p,q,9) q
geELoNL,
M(y)=1

e Example of a map that contributes to Q:

Ly
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Floer homology

e Simply the homology of the Floer complex:

HF (Lo, L) = H*(CF(Lo, 1), Q)

e Invariant under Hamiltonian isotopy of L or L,
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The A-model

o Let Y = ®"% Symde A where A is an infinite cylinder

=il
e gis a Lie algebra
s .7 parameters

e One can think of Y as the configuration space of colored points on a

(punctured) infinite cylinder

e Example:

Pirsa: 23050138 Page 12/68



The potential

e Equip Y with a potential W

e Let y, . parametrize Y with a corresponding to Sym%: A and
d, labelling the different copies of A

/

rkg
W = MW + Z A WO

a=1
= Z Ina, .

rkg

W — S ()
a=l
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The potential

Hﬁ(l & ai/ycx,a)<ca“ui>
G H(b’ﬁ)#(a@)(l = yﬁab/ya,aye“’eb)/?

faw) = 11

e a; are special marked points on the cylinder (“punctures”)

e /i; is the highest weight of the representation coloring the
corresponding puncture

e ¢, are the roots of g
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The potential: an example

Consider g = sus with 4 punctures labeled by w; and 2 marked points

In this case, Y = Sym?A because 7k sus = 1 and we chose d; = 2

2
W(y) =Xoln f(y) + A1 Z In vy,

cy=il

_ oy (- ai/ya)*?
ol al;[] [lsce(d — ¥s/¥e)

X a4
Y @ xXas
X a2
Xaq
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A-branes

e A-branes are supported on Lagrangian submanifolds of Y

e They can be described as products of either

e one-dimensional curves between a pair of punctures
e closed one-dimensional curves (figure eights or ovals) encircling pairs
of punctures

e Examples:
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Morphisms between branes

e Morphisms between branes are defined by Floer theory

Hom;’; (Lo Lq)i= HEY (Lg, L)

e Two gradings:

e the equivariant grading J
e the Maslov/homological grading M
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The gradings: Maslov and equivariant

e Equivariant grading comes from non-singlevaluedness of W':

1 :
—— Yy dW*
2mi Jop

e Maslov grading comes from the change of phase of the top
holomorphic form on Y:
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Translating a link to A-branes

Start with a presentation of a link as a braid closure:
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Translating a link to A-branes

Start with a presentation of a link as a braid closure:
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Translating a link to A-branes
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Homological link invariants

Theorem
Homy, (#Eu, Iy) is a link invariant.

Example:

CF(%Ey, Iy) is spanned by 8 points: p;q;, r;s; for i,j € {1,2}
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An algebraic approach to solving the theory
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Every A-brane can be written in terms of special branes known as
Lefshetz thimbles

Left Lefshetz thimbles T are downward gradient flows of Re(W)

Each thimble passes through a critical point of W

Left thimbles are products of real line Lagrangians
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Morphisms between thimbles

e Morphisms between thimbles are given by intersection points after
wrapping one thimble:

g s (M — HFU’U(Tf,Tj)

e Wrapped thimbles are gradient flows of Re(e= W) for small, real ¢

e
BN NW/E

e s /1,
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Composing morphisms

Homg, (T;,T}) @ Homg, (T;,T;) - Homg, (T3, Tj)

HFOO(Tf,T,) © BFOO(X, If) — HFP(T, T,)

Product of morphisms are given by counting holomorphic triangles

For example:

Qo loigis=ll (1]
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The thimble algebra

e The thimble algebra can be described as a strand algebra on a
cylinder

e This strand algebra is generated by certain “bits":

{ ) X

e Multiplication is given by stacking the diagrams, for example:

A1 Al =M
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Composing morphisms

Homg, (T, Tx) ® Homg, (T;, Tj) — Homg, (T;, Ty)

HFPY(TS, Th) ® HFOT, TF) - HF(T¥, 1)

Product of morphisms are given by counting holomorphic triangles

For example:

@ {osslnqic=l {5
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Finding resolutions

Resolutions of one-dimensional branes can be written down from
geometry

Resolutions of branes on Y\ A (where A is the diagonal in

D — ®;k:91 Symda(A)) are constructed from products of
one-dimensional branes

We then solve for the unique deformation extending the resolution
fromY\AtoY

Passing from Y\ A to Y does not change the set of thimbles, only
their algebra
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An algebraic approach to solving the theory

gly;; examples
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Relations for g,

e There are two colors of punctures, so the “bits” are as follows:

{ ) [ A\ X

e [ here are two relations:

KK

e There is also a differential:

Pirsa: 23050138 Page 31/68



The parameter h

e h keeps track of the intersection with the diagonal A in Sym<(A)

e It may be set to 1 by rescaling the algebra generators but it’s useful
to leave in for computational purposes

Setting h = 0 gives the algebra on Sym?(A)\A

Pirsa: 23050138 Page 32/68



Projective resolution:

Es
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Naively, one would expect to recover HFK of the unknot from the
diagram

il

but it turns out that Homy; (E», I3) = 0.

Instead, one must cut a strand to obtain a nonzero invariant.
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Another diagram for the unknot is

Then we can cut a strand to get

-« )

This second diagram gives

Homgz (Ea,I3) =C
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Twisted complexes

e Twisted complexes are necessary because not all maps have Maslov
degree 0

e In an ordinary chain complex, the differential is made of maps

Ok.k—1: Vi = Vi1

e In a twisted complex, the differential has maps
(Sk.,g z V}h = Vp

where M (0 e) =2+1—k
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Twisted complexes

e The condition that the differential square to 0 is

ka(é, o) — 0
k

where my, : A®% 5 A

e For g = gly;, the algebra is a differential graded algebra with
differential @ ~ m, product ms, and all higher products vanishing

e In this case, the condition becomes

96+ 62 =0
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gly;1 Hopf link
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gl;;1 Hopf link resolution

bl

= T4[_*1]

W [ 1N Il wi

Ty an[Bl{E2) e i [ S I e T ERll

Hom}y! (BE, I,) = C2|{—2} & C[1]{~1}
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Examples with d > 1

e In the previous examples, there was only one oval brane, meaning 0
acted trivially on the o

e |f we want to describe knots with bridge number greater than 2,
we'll need more than one oval brane

e Those examples are quite complicated (the simplest having 8
crossings), so | will do a short toy example here:
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d = 2 toy example

Then, we consider the product of L; with each of the other two thimbles:
75 andid

In doing so, we must keep track of the horizontal positions of 1-branes
relative to each other and to the punctures. We find the complexes

Ll XTQ
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d = 2 toy example

Then, we consider the product of L; with each of the other two thimbles:
i and

In doing so, we must keep track of the horizontal positions of 7T-branes
relative to each other and to the punctures. We find the complexes

Ll XTQ
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d = 2 toy example

Next we glue Ly x T to Ly x T}, starting with their direct sum of the
branes.

After turning on the map from Lo, we find

IH

A T
DoL i oA

I
N

This is the geometric differential dg
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d = 2 toy example

The A, differential 9 acts by uncrossing strands in dg. The resulting
maps 04y are

T2 2 T2 4

i\ BN

T2y T4

So to satisfy 9 + 6% = 0, we add an additional map &; to g, so that
0 = dg + 07 satisfies the condition. The resulting complex is the correct
projection resolution for our toy example:
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d = 2 toy example

This additional map we turned on corresponds to the geometric disk:

It is a general feature of the theory that the non-geometric terms in the

complex corresponds to disks in HFK.
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Adding dots

For all Lie (super)algebras besides gl |;, Y is actually a subspace of
a larger space ), which fibers over Y with (C*)? fibers

We want to consider morphisms of thimbles in ) rather than in Y
We can account for the total space ) by adding dots to the strand
algebra

For Lie algebras, the strand algebra is known as the KLRW algebra
and has been studied from a B-side perspective by Webster (2019)

The calculation of the strand algebra on the A-side will appear in
upcoming work of Aganagic-Danilenko-Li-Shende-Zhou
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Relations for su,
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=

Resolution:

(—”(u) i

E,2=2To{-1} —— @& —>1T7
i
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suy Hopf link: ZE; resolution

-l il M’II Jh Ml ML

Ti2{-1} = Tu[I{-1} —= T3 < Tp[1] ¢— Tu[2{-2} «— Tz[3}{-2} —
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suy Hopf link: geometric complex

T12(3] — T13[2] Tu[3{—1} «— Tia[4]{—1} «——— Ty[5}{—3} — Ti5[4|{-3} — -

Toa[2[{—1} —— Taa[U[{—1} —— T4a[2{~2} ~— Toa[3{~2} +— Tua[4]{-3} — Tus[3|{-3} — -
7o [ IS S e e P e S R e e
Tyo[2) —— Tos[1]{—1} —— Toa[2){—2} — To2[3]{-1} «— Toa[4]{-2} — Tos[3]{-2} — -

Toa[31{—2} — Taa[2l{—2} —— Tua[3{-3} —— Toaldl{ -3} ¢—— TualS|{—4} — Tusl{-4} — -

o1 = 1 <= mal{e ey e = w5l olc Bl A = (5 (e
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suy Hopf link: dotted corrections

Al

0

ul ]

0

\ &

[
[

il 0 0
Wil lif o
O kU
0 0 Vid

O sl O
s L e |
R 1 VR

i

% o —ull)
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suy Hopf link: possible i corrections

(W W e 0 )
ol o
i TR N
o (R

4l M el ol sl

I az'l(l)‘hkll —ufl  zoffl Il

woftth R Il
\zah I zofN bl

We use (6)5 - (6)¢ = 0 to solve for the coefficients z;

For example, the 4th row of (d)5 - (d)g gives

_lwll_m }4_3;8{ +Wﬂ:0 — e — i tre i
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Page 52/68



sus Hopf link: taking homology

Taking only the terms 754 from the complex gives C'F**(ZEy, Ii):

0

(uh 0)
c{-2} \uvh 0/ c{-2)

»y C{—-2} —» 0 —» C{-4}

Taking the homology gives the suy homology of the Hopf link:

Homg ' (BEy, Iu) = C4{-1} @ C[2{-3} ® C[2{ -2} ® C{—4}
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Solving order by order in A

At order zero, we just have

63 = O(h)

At order one, we have
R(8001 + 0160) + 62 = O(R?)
At order k, the equation has the form
h* (800 + 8x00) + Di(do, . . ., 0k—1) = O(KFTY)

where Dy, is an operator that depends only on d; for £ < k

We see that at each order, we have a linear equation for ;.
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Simple Lie algebras

Choose a representation V' of g with highest weight p

Y = ®£ig1 Symde A where d, are chosen to satisfy

Punctures are colored by V' and V* such that cups and caps connect
dual pairs of punctures

Cups are products of figure-eights colored by roots according to d,

Caps are intervals with colored dots given by d,
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Simple Lie algebras

Choose a representation V' of g with highest weight p

Y = ®:igl Symde A where d, are chosen to satisfy

Punctures are colored by V' and V* such that cups and caps connect
dual pairs of punctures

Cups are products of figure-eights colored by roots according to d,
Caps are intervals with colored dots given by d,

Ordering of the figure-eights and colored dots corresponds to the
order one needs to substract roots e, from px to reach —pu*
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Simple Lie algebras: examples

o suy with = w,

e suy with u = wo
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Unknot homology for su, with = w,

Homy} (BEy, Iu) = C[6]{-3} ® C[4]/{-2} ® C[2]{-1} & C
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e Theory for gl,,|,, is similar to that of Lie algebras

e Main difference is that fermionic roots are associated to ovals rather
than to figure-eights

e Example: cups and caps for gl
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Computations for other Lie (super)algebras

Computational methods developed for suy and gl;|; extend more or
less directly to other cases

Resolutions are more complicated, requiring more thimbles
Algebra for simple Lie algebras never has a differential

Algebra for gl has a differential and a nontrivial product

m|n
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Markov moves

To prove that Homg:(t@’Eu? I;) are link invariants, we must prove they

satisfy four relations, which are the analogues of Markov moves for plat
closures

The first two relations, shown above, are manifest by construction
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Markov moves

The next relation is the analogue of a Markov | move:
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Sketch of proof

In terms of cups and caps, the two relations we need to prove are

B
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Sketch of proof

In terms of cups and caps, the two relations we need to prove are

g

)

Both are these of relations follow from

<5

Pirsa: 23050138 Page 64/68



Pirsa: 23050138

Sketch of proof

| G ><>) G><) |{-1}

e Start with resolutions L1 2 T} x F5 and Lo & Ey x T3{—1}
e Explicitly show L, and L, are homotopy equivalent:

1. Construct chain maps f: L1 = La and f' : Ly — L,

2. Show f'-f ~idr, and f - f' ~idr,

e Same method works for gl;|; using definitions adjusted for twisted
complexes
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Sketch of proof

| G ><>) G><) |{-1}

Start with resolutions L1 2 T; x E5 and Lo & Ey x T3{—1}
Explicitly show L, and Lo are homotopy equivalent:

1. Construct chain maps f: L1 = La and f' : Ly — L,

2. Show f'-f ~idr, and f - f/ ~idr,
Same method works for gly|; using definitions adjusted for twisted

complexes

Method should work for any Lie algebra or superalgebra limited by
computational feasibility
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We reviewed Aganagic's A-model formulation of link homology and
extended it to include Lie superalgebras

We gave a method for computing link homology associated with a
(minuscule) representation any Lie algebra or superalgebra

We explicitly showed how this method works for fundamentel rep of
suy and gly)y

We gave a proof of topological invariance for the su; and gl;;

theories
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Thank you




