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Abstract: The constrained Hamiltonian formalism is the basis for canonical quantization techniques. However, there are disagreements surrounding
the notion of a gauge transformation in such a formalism. The standard definition of a gauge transformation in the constrained Hamiltonian
formalism traces back to Dirac: a gauge transformation is a transformation generated by an arbitrary combination of first-class constraints. On the
basis of this definition, Dirac argued that one should extend the form of the Hamiltonian in order to include all of the gauge freedom. However, Pitts
(2014) argues that in some cases, a first-class constraint does not generate a gauge transformation, but rather "a bad physical change'. Similarly,
Pons (2005) argues that Dirac's analysis of gauge transformations is "incomplete” and does not provide an account of the symmetries between
solutions. Both authors conclude that extending the Hamiltonian in the way suggested by Dirac is unmotivated. If correct, these arguments could
have implications for other issues in the foundations of the constrained Hamiltonian formalism, including the Problem of Time. In thistalk, | use a
geometric formulation of the constrained Hamiltonian formalism to show that one can motivate the extension to the Hamiltonian independently
from consideration of the gauge transformations, and | argue that this supports the standard definition of a gauge transformation without falling prey
to the criticisms of Pitts (2014) and Pons (2005). Therefore, in order to maintain that first-class constraints do not generate gauge transformations,
one must reject the claim that the constrained Hamiltonian formalism is fully described by the geometric picture; | suggest two avenues for doing so.
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Background

* In several Lagrangian theories we find that there are (local)
symmetries related (via Noether’s second theorem) to dependencies
among the Euler-Lagrange equations.

* In such cases, we seem to have a breakdown of determinism: there is
arbitrariness in the solutions to the equations of motion.
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Background

* In several Lagrangian theories we find that there are (local)
symmetries related (via Noether’s second theorem) to dependencies
among the Euler-Lagrange equations.

* In such cases, we seem to have a breakdown of determinism: there is
arbitrariness in the solutions to the equations of motion.

Gauge Transformation: A transformation that connects physically
equivalent descriptions of the same state or history of a physical
system.
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How do we combat the threat of
indeterminism?

The Constrained Hamiltonian formalism provides a framework for
identifying the gauge-invariant variables (the ‘observables’) by linking
constraints on what is a “physically allowed” state to gauge freedom.

Of particular importance
are the first-class
constraints: those that
“commute” with each
other.
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Dirac View of Gauge Transformations

Arbitrary combinations of first-class constraints generate a gauge
transformation.

!

Therefore, one should extend the Hamiltonian to include all the gauge freedom.
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Problems for the Dirac view

1. Counterexamples to the claim that first-class secondary constraints generate
gauge transformations. (Henneaux and Teitelboim (1992))

2. Counterexamples to the claim that each first-class constraint generates a gauge
transformation. (Pitts (2014a,b))

3. Arguments that Dirac’s proof is faulty and limited in scope. (Pons (2005),
Barbour and Foster (2008))
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Alternative View of Gauge Transformations

A specific combination of first-class constraints generates a gauge transformation.

!

Therefore, one need not extend the Hamiltonian (to the extent Dirac did).
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| will argue that the reasoning in both the Dirac and
alternative view of gauge transformations is flawed,
TO CO m e but that correct reasoning validates the definition of
oo a gauge transformation given by Dirac: arbitrary
combinations of first-class constraints generate a
gauge transformation.
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Importance for Quantum Gravity

* Constrained Hamiltonian formalism provides the basis for canonical quantization
methods.

* The constrained Hamiltonian formalism is the basis of the “Problem of Time”: when
the Hamiltonian is one of the first-class constraints, the Dirac view leads to the
conclusion that time evolution is the unfolding of a gauge transformation.

* |f the Dirac view does not hold, then perhaps the Problem of Time can be
avoided.
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Wider Importance: Relationship between Lagrangian
and Hamiltonian pictures

* Determining the gauge symmetries of the Hamiltonian and Lagrangian pictures is
important for determining whether these two pictures can be said to be equivalent.

* Some advocates of the alternative view argue that it matches the Lagrangian gauge
transformations, unlike the Dirac view.
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Rest of the Talk

Dirac’s recipe and argument for the Dirac view of gauge transformations
An argument against Dirac and in favor of alternative view
Geometric picture of the constrained Hamiltonian formalism

Resolving the debate

LA

Upshots and possible response

10
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Dirac’s Recipe




Dirac’s Recipe

!




Dirac Gauge Transformation

A gauge transformation relates any two states (g4 (6t), p1(6t)) and (g, (6t), p,(6t)) that

are possible evolutions from an initial (qy(ty), po(ts)) under Hy = H + u™,,, at some
fixed (infinitesimal) interval dt.

By considering two different choices of u™, Dirac shows:

Each primary first-class constraint generates a gauge transformation.

Moreover, Dirac conjectures:

Each secondary first-class constraint generates a gauge transformation.
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_Extended Hamiltonian

| “We were led to the idea that there are certain changes in the p’s and

the g’s that do not correspond to a change of state, and which have as
generators first-class secondary constraints. That suggests that... we
should consider a more general equation of motion g = {g, Hg} with
an extended Hamiltonian Hg, consisting of the previous Hamiltonian
Hr , plus all those generators that do not change the state, with

\ arbitrary coefficients.”

y

13
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Gauge transformations are generated by each first-
class constraint and arbitrary combinations of them.

. , []
Dirac’s Final |
Equation of motion given by f = {f, Hg} where

D | Ct ure Hg = H + u/y; where y; are the first-class
constraints.
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Response to Dirac

Dirac’s proof is incomplete; it only gives an account of gauge transformations as a
transformation on states that is distinct from the standard notion of a gauge
transformation as a map between solutions to the equations of motion. (Pons (2005))
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Pons’ Definition of a Gauge Transformation

A gauge transformation relates any two states (g, (t), p;(t)) and (qz (t), v, (t))
that are possible evolutions from an initial (qo(ty), po(ty)) under Hr = H + u™¢,,
for any time t.

Under this account, Pons shows that the form of the gauge transformations is given by:
N
6(H) =) 6V
i=0

where each G; is a first-class constraint (satisfying some conditions) and £ is an arbitrary function of
time.

At a particular time, this reduces to the Dirac gauge transformations.
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s there any tension?

Two notions of a gauge transformation:

1. A gauge transformation as a map from one state to a physically equivalent state
(Dirac view)

2. A gauge transformation as a map from a solution to the equations of motion to
another physically equivalent solution (alternative view)

Can’t we keep these two things kept apart?
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Where the tension lies

There is a conceptual issue with this division: it means that individual

states along two curves can be gauge-equivalent without it being the case
that if one curve is a solution, the other also is. But if gauge-equivalence
means physical equivalence, how can this be so?

19
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Debate assumes reasoning as follows:

Determine gauge transformations using total Hamiltonian.

!

Use gauge transformations to say whether to extend the Hamiltonian.

Could we reason the other way round?
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Let’s consider
things

geometrically...

21
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* Phase space I' {(q;,p;),i = 1, ..., N} as cotangent
bundle of configuration space T*C

* T comes equipped with one-form given by 8 = p;dq’
with corresponding two-form w = d@ which is
symplectic (closed, non-degenerate)

Let’s consider

' * Given function f, can uniquely define smooth
il Ng> tangent vector field X through w(X;, ) = df(+)

geometrically...

21
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' * Given function f, can uniquely define smooth
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geometrically...

* Symplectic manifolds give rise to Poisson bracket
structure:

{f,9}= w(XfJXg)

21
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things
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Phase space I" {(g;,p;),i = 1, ..., N} as cotangent
bundle of configuration space T*C

[' comes equipped with one-form given by 8 = p;dq*
with corresponding two-form w = d@ which is
symplectic (closed, non-degenerate)

Given function f, can uniquely define smooth
tangent vector field X through w(X;, ) = df(+)

Symplectic manifolds give rise to Poisson bracket
structure:

{f,9}= w(XfJXg)

Equations of motion:

21
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* Phase space I' {(q;,p;),i = 1, ..., N} as cotangent
bundle of configuration space T*C

* T comes equipped with one-form given by 8 = p;dq*
with corresponding two-form w = d@ which is
symplectic (closed, non-degenerate)

Let’s consider

' * Given function f, can uniquely define smooth
il Ng> tangent vector field X through w(X;, ) = df(+)

geometrically...

* Symplectic manifolds give rise to Poisson bracket
structure:

{f,9}= w(XfJXg)

* Equations of motion:
d

{f H} = (X, Xy) = df Xy) = 5L

‘ N
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* (First-Class) constraints y;(q,p) =
Oforj=1,..,MgiverisetoN — M
dimensional submanifold, the
constraint surface, X.

' * Induced two-form @ on the constraint
Constral I’]tS, surface is degenerate: possesses M
null vectors associated with the first-
class constraints:

Geometrically

22
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* (First-Class) constraints y;(q,p) =
Oforj=1,..,MgiverisetoN — M
dimensional submanifold, the
constraint surface, X.

' * Induced two-form @ on the constraint
Constral I’]tS, surface is degenerate: possesses M
null vectors associated with the first-
class constraints:

G(XV,-J ) = dyjlg =0

Geometrically

22
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Gauge Orbits

Henneaux and Teitelboim (1994): “The identification
of the gauge orbits with the null surfaces of the

Quamimlinn of (Fauge Systems

induced two-form relies strongly on the postulate B Mare Henneaux
made throughout the book that all first-class | Claudio Teitelboim

constraints generate gauge transformations.”

24
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Gauge Orbits

Henneaux and Teitelboim (1994): “The identification
of the gauge orbits with the null surfaces of the

Quamizalinn of (Fauge Systems

induced two-form relies strongly on the postulate B, Marc Henneaux
made throughout the book that all first-class D Claudio Teitelboim

constraints generate gauge transformations.”

Does this mean that the geometric view is subject
to the criticisms of Pons?

No: The geometric picture can be used to show that
the reasoning in the debate is wrong.

24
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Reasoning in Debate

Determine gauge transformations using total Hamiltonian.

!

Use gauge transformations to say whether to extend the Hamiltonian.
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Geometric Reasoning

Motivate Extended Hamiltonian. Determine gauf:gtgtté‘?nsformation of

! !

Use extended Hamiltonian and gauge freedom in states to determine gauge
transformations on solutions.
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Motivating Extended Hamiltonian without
assumptions about gauge transformations

Consider Xy = Xy + anyj
' &5 al P =
Since ® (a ij, ) =0,

& (X +aiXy, ) =0y, ) +6(alXy,, ) = B(Xy,) = dH|;

The evolution generated by Xy and Xy + anyj is not distinguished on .
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Motivating gauge transformations on states
without dynamics

* On the constraint surface, @ only acts on vector fields that are tangent to the
constraint surface i.e. the vector fields that are constant along the gauge orbits:

w(Xr, X, ) = 0 on the constraint surface.

* This means that for functions that vary along the gauge orbits, the induced two-
form cannot ‘see’ this change.

Each first-class constraint generates a gauge transformation on states.
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Motivating gauge transformations on solutions
from extended Hamiltonian and gauge freedom in
states

* Xy = Xy + anYj generates a curve that differs only with regards to where on
the gauge orbit it lies at each point in time.

* Moreover, each point along a gauge orbit form an equivalence class of states.

Each first-class constraint generates a gauge transformation from a solution to the
equations of motion to another solution.
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Upshot

* Dirac was right about the definition of the gauge transformations and
the role of the extended Hamiltonian, but his reasoning was flawed.

* Restricting the equivalence class of Hamiltonians to those that only
include an arbitrary combination of primary first-class constraints is
unnatural since:

1. It distinguishes different null vectors that are structurally equivalent.

2. It would be to say that the dynamics can distinguish states along a gauge
orbit, even though the structure of the constraint surface cannot distinguish
these states.
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Possible Response:

“Only the total Hamiltonian produces the correct, Lagrangian
equivalent gauge transformations.”
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Possible Response:

“Only the total Hamiltonian produces the correct, Lagrangian
equivalent gauge transformations.”

* This is to deny that the geometry of the constraint surface captures
the full picture.

Option 1: Argue that the interpretation of primary and secondary
constraints is distinct within the Hamiltonian formalism.

Option 2: Argue that the Lagrangian formalism provides the basis for
the distinction between primary and secondary constraints.
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