Title: Quantum Gravity and its connection to observations

Speakers: Astrid Eichhorn

Collection: Quantum Spacetime in the Cosmos: From Conception to Reality

Date: May 08, 2023 - 9:30 AM

URL: https://pirsa.org/23050111

Abstract: To make progress in developing a quantum theory of gravity, we need to connect candidate theories to observations. I will review ideas on connecting quantum gravity to observations in particle physics, to searches for dark matter and to observations of black holes, in particular with the (next-generation) Event Horizon Telescope.

Zoom Link: https://pitp.zoom.us/j/94575380034?pwd=Y21DMTRqeFFGNnd5dnVBc1dac2tUQT09

Pirsa: 230501111 Page 1/30

Quantum gravity and its connection to observations

Quantum spacetime in the cosmos: from conception to reality Perimeter Institute, May 8, 2023

Astrid Eichhorn, CP3-Origins, University of Southern Denmark

VILLUM FONDEN

Pirsa: 23050111 Page 2/30

Pirsa: 23050111 Page 3/30

Why is it so challenging to test quantum gravity?

$$\ell_{\text{Planck}} = \sqrt{\frac{\hbar G_N}{c^3}} = 10^{-35} m \qquad (M_{\text{Planck}} \approx 10^{19} \,\text{GeV})$$

Simple/naive dimensional estimate

- · lacks dynamical information
- assumes "naturalness" (but see cosmological constant)
- · assumes quantum gravity comes with a single scale

Strategy:

- 1) be agnostic and constrain new-physics scale $\ell_{
 m NP}$
- 2) be pessimistic and find leverarms that make ℓ_{Planck} accessible in observations

Pirsa: 23050111 Page 4/30

Testing black-hole spacetimes with shadow observations

Approaches to black-hole shadows beyond GR:

- i) parameterized approach:
 parameterize all possible deviations of the metric from Kerr (disconnected from fundamental theory)
- ii) principled-parameterized approach:

 calculate black-hole shadow in models based on general principles [AE, A Held <u>'21 a</u>, <u>'21 b</u>]
- iii) principled approach:

 calculate black-hole shadow in each conceivable theory beyond GR (too much information given finite EHT resolution)

Pirsa: 23050111 Page 5/30

Black holes that satisfy regularity, locality and simplicity

spherically symmetric, stationary black hole

[AE, Held, Johannsen '22; axisymmetric case in AE, Held '21]

$$ds^{2} = -f(r)dt^{2} + f(r)^{-1}dr^{2} + r^{2}d\Omega^{2}$$

$$f(r) = 1 - 2\frac{G_N M}{r}$$

 $f(r) = 1 - 2 \frac{G_N M}{r}$ upgrade to non-singular spacetime: $f(r) = 1 - 2 \frac{G_N M}{r} f_{\rm NP}$

$$f(r) = 1 - 2\frac{G_N M}{r} f_{NP}$$

• locality: upgrade depends on local curvature scale

$$f_{\rm NP} = f_{\rm NP} \left(R_{\mu\nu\kappa\lambda} R^{\mu\nu\kappa\lambda}(r) \cdot \mathcal{C}_{\rm NP}^4 \right)$$

regularity: upgrade removes curvature singularity

$$f_{\rm NP} = \frac{1}{\sqrt{\left(R_{\mu\nu\kappa\lambda}R^{\mu\nu\kappa\lambda}(r)\cdot\mathcal{E}_{\rm NP}^4\right)}} + \mathcal{O}\left(\left(R_{\mu\nu\kappa\lambda}R^{\mu\nu\kappa\lambda}(r)\cdot\mathcal{E}_{\rm NP}^4\right)^{-3}\right)$$

• simplicity: upgrade introduces a single new-physics scale $\ell_{
m NP}$

Black holes that satisfy regularity, locality and simplicity

spherically symmetric, stationary black hole

[AE, Held, Johannsen '22; axisymmetric case in AE, Held '21]

$$ds^{2} = -f(r)dt^{2} + f(r)^{-1}dr^{2} + r^{2}d\Omega^{2}$$

$$f(r) = 1 - 2\frac{G_N M}{r}$$

 $f(r) = 1 - 2 \frac{G_N M}{r}$ upgrade to non-singular spacetime: $f(r) = 1 - 2 \frac{G_N M}{r} f_{\rm NP}$

$$f(r) = 1 - 2\frac{G_N M}{r} f_{\text{NF}}$$

• locality: upgrade depends on local curvature scale

$$f_{\mathrm{NP}} = f_{\mathrm{NP}} \left(R_{\mu\nu\kappa\lambda} R^{\mu\nu\kappa\lambda}(r) \cdot \mathcal{E}_{\mathrm{NP}}^4 \right)$$

regularity: upgrade removes curvature singularity

$$f_{\rm NP} = \frac{1}{\sqrt{\left(R_{\mu\nu\kappa\lambda}R^{\mu\nu\kappa\lambda}(r)\cdot\ell_{\rm NP}^4\right)}} + \mathcal{O}\left(\left(R_{\mu\nu\kappa\lambda}R^{\mu\nu\kappa\lambda}(r)\cdot\ell_{\rm NP}^4\right)^{-3}\right)$$

• simplicity: upgrade introduces a single new-physics scale $\ell_{
m NP}$

examples:

Dymnikova:
$$f_{NP}[x] = 1 - e^{-1/\sqrt{x}}$$

Hayward:
$$f_{NP}[x] = 1/(1 + \sqrt{x})$$

Simpson-Visser:
$$f_{NP}[x] = e^{-x^{1/6}}$$

Black holes that satisfy regularity, locality and simplicity

spherically symmetric, stationary black hole

[AE, Held, Johannsen '22; axisymmetric case in AE, Held '21]

$$ds^2 = -f(r)dt^2 + f(r)^{-1}dr^2 + r^2d\Omega^2$$

$$f(r) = 1 - 2\frac{G_N M}{r} f_{\rm NP}$$

Does this approach cover quantum gravity theories?

Example: Asymptotically safe quantum gravity

[Bonanno, Reuter '01, Falls, Litim '12,...., Adeifeoba, AE, Platania '18, AE, Held '22]

 $f_{
m NP}$ from scale-dependence of Newton coupling

$$G_N(k^2) = \frac{G_N(0)}{1 + \omega G_N(0) k^2} \qquad k^2 \sim \sqrt{R_{\mu\nu\kappa\lambda}R^{\mu\nu\kappa\lambda}}$$

$$\to f_{\rm NP} = \frac{1}{1 + \ell_{\rm NP}^2 \sqrt{R_{\mu\nu\kappa\lambda}R^{\mu\nu\kappa\lambda}}}$$

Observational consequences

spherically symmetric, stationary black hole

$$ds^{2} = -f(r)dt^{2} + f(r)^{-1}dr^{2} + r^{2}d\Omega^{2}$$

$$f(r) = 1 - 2\frac{G_N M}{r} f_{\rm NP}$$

- photon sphere is more compact
- ⇒ shadow is more compact

[AE, Held, Johannsen '22; axisymmetric case in AE, Held '21]

- for $\ell_{\rm NP} > \ell_{\rm NP,\,crit}$, horizon is resolved
- ⇒ images show inner photon rings

Observational consequences

spherically symmetric, stationary black hole

$$ds^{2} = -f(r)dt^{2} + f(r)^{-1}dr^{2} + r^{2}d\Omega^{2}$$

$$f(r) = 1 - 2\frac{G_N M}{r} f_{\rm NP}$$

- photon sphere is more compact
- \Rightarrow shadow is more compact

[EHT constraints on shadow size of M87*] [Hayward-type/ Asymptotic-safety inspired case]

[Simpson-Visser case]

[AE, Held, Johannsen '22; axisymmetric case in AE, Held '21]

- for $\ell_{\rm NP} > \ell_{\rm NP,\,crit}$, horizon is resolved
- \Rightarrow images show inner photon rings

Pirsa: 23050111 Page 11/30

[AE, Gold, Held '22 and AE, Held '22]

Pirsa: 23050111 Page 12/30

Can the (ng) EHT distinguish black holes and horizonless spacetimes?

simulated observation with future telescope array (next-generation EHT)

increased dynamic range: shadow vs. inner bright region

 $\hat{f}_c = rac{ ext{lower 5th percentile of flux in shadow}}{ ext{mean flux in ring}}$

array configuration	\hat{f}_c for $\frac{a}{M} = 1.01$	\hat{f}_c for $\frac{a}{M} = 0.9$
EHT 2017 (230 GHz)	0.226	0.080
EHT 2022 (230 GHz)	0.163	0.041
ngEHT (230 GHz)	0.166, 0.094*	0.037
ngEHT (230 GHz multifreq)	0.269	0.009
ngEHT (345 GHz multifreq)	0.271	0.007

[AE, Gold, Held '22 and AE, Held '22]

Pirsa: 23050111 Page 13/30

Pirsa: 23050111 Page 14/30

Second testing ground: particle physics

What if
$$\ell_{\mathrm{NP}} = \ell_{\mathrm{Planck}}$$
?

→ Logarithmically running couplings as a leverarm

Pirsa: 23050111 Page 15/30

Pirsa: 23050111 Page 16/30

* or are they? [de Alwis, AE, Held, Pawlowski, Schiffer, Versteegen '19]

Pirsa: 23050111 Page 17/30

imprints of microscopic physics at macroscopic scales

very different at microscopic scales

Pirsa: 23050111 Page 18/30

zooming out: most microscopic information gets lost

higher-order couplings: universality

imprints of microscopic physics at macroscopic scales

→ identify which (beyond) Standard Model couplings are sensitive to the microphysics

logarithmic scale dependence: preserves "memory" of initial conditions at the Planck scale

Pirsa: 23050111 Page 19/30

Quantum gravity and values of Standard Model couplings at the Planck scale

Standard Model couplings: free parameters

Pirsa: 230501111 Page 20/30

Proof of principle: Yukawa couplings

$$\beta_{y_t} = \frac{9}{32\pi^2} y_t^3 - f_y y_t + \dots$$

metric fluctuations (cf. effective change in dimensionality)

$$f_y = {
m const}$$
 above ${
m M}_{
m pl}$ $f_y o 0$ below ${
m M}_{
m pl}$

$$f_{
m y}
ightarrow 0$$
 below M_{pl}

Pirsa: 23050111 Page 21/30

Quantum gravity and values of Standard Model couplings at the Planck scale

Standard Model couplings: free parameters

Two examples:

- · Asymptotically safe quantum gravity
- Causal set quantum gravity

Pirsa: 23050111 Page 22/30

Predictive power of asymptotic safety: Concept

Pirsa: 23050111 Page 23/30

Predictive power of asymptotic safety: Concept

Pirsa: 230501111 Page 24/30

Predictive power of asymptotic safety: Concept

Pirsa: 230501111 Page 25/30

Towards an upper bound on the Higgs mass from causal set quantum gravity

Causal set:

discrete, Lorentzian approach: spacetime as a causal network

Propagator for a scalar field: [Sorkin '07] summing over (causal) nearest neighbors

Average over different sprinklings into Minkowski spacetime:

propagator $\sim 1/p^2$ in the IR and $\sim {\rm const} - \frac{1}{p^4}$ in the UV

use functional RG techniques to calculate running of the quartic scalar coupling

[de Brito, AE, Fausten, to appear]

Towards an upper bound on the Higgs mass from causal set quantum gravity

standard local QFT:

Landau pole in quartic coupling

 λ (quartic interaction)

To shift $k_{\rm Landau}$ further into the UV, must lower λ_0 .

Mass of the scalar $M = 3\lambda_0 v$

 \Rightarrow the further the theory extends into the UV, the lower the scalar mass

causal-set inspired case:

Landau pole in quartic coupling persists

 $k_{\rm Landau} \gtrsim \rho^{1/4}$

Pirsa: 23050111 Page 27/30

Towards an upper bound on the Higgs mass from causal set quantum gravity

standard local QFT:

Landau pole in quartic coupling

 λ (quartic interaction)

To shift $k_{\rm Landau}$ further into the UV, must lower λ_0 .

Mass of the scalar $M = 3\lambda_0 v$

 \Rightarrow the further the theory extends into the UV, the lower the scalar mass

causal-set inspired case:

Landau pole in quartic coupling persists

$$k_{\rm Landau} \gtrsim \rho^{1/4}$$

Outlook: including the other fields of the Standard Model will result in upper bound on Higgs mass as a function of ρ

Quantum gravity and particle physics beyond the Standard Model

Asymptotic safety and the dark sector

Pirsa: 23050111 Page 29/30

Summary:

necessary link in physics

experiment/observation

theory

Is the Planck scale really the scale of quantum gravity?

- 1) be agnostic and constrain new-physics scale $\ell_{
 m NP}$
- 2) be pessimistic and find leverarms that make ℓ_{Planck} accessible in observations

Pirsa: 23050111 Page 30/30