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OUTLINE

+ On acceleration

s Accelerating black holes — 4D

% Thermodynamics of tension

+» Acceleration, Chemistry, Isoperimetry
¢ Acceleration in 3D

+» Geometry of acceleration
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WHAT IS ACCELERATION?Y

Acceleration is when an object is not travelling on a geodesic.
VT & T

For example, consider an observer at R=R, in AdS:
R? dR?
2 2 2 2 e 2 2
dsygs = — (1+€—2) dt* + 1+?_22 + R (d@ + sin“ ©d¢ )
The tangent vector is purely timelike, but the acceleration is
radial:

T — 1 0 Ry 0

= - A=VT=-"2"
/1+%8t T 72 or
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RINDLER WITH NO HORIZON

The magnitude of the 1 o

acceleration is related 1= =07 | ‘
to Ry V14 1;20615 ; :
2 /p4 ‘
A = Ro/f e
2 or
AEQ l {

Ry 1 e

— /1 A2
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ACCELERATING A BLACK HOLE

This probe observer does not disturb AdS, but we can
insert a black hole by using the C-metric

g=1+2mAcosf f determines horizon structure —
Q=1+ Arcosf black hole / acceleration /
cosmological constant

Hong & Teo, CQG20 3629 (2003)
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SLOWLY ACCELERATING RINDLER

For m=0, there is no horizon, and setting

R? 1+ (1— A20%)r2 /42 , 7 sin 0
7T u-meee 0 HEme=Tg

1+

We get back to global AdS

R? dR
dszAdS — —(1 + E_Z)OZZdtz + 1 R_2
{2

2

+ R? (d@z + sin? @%)

Modulo the factor of

o =+/1— A202
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AdS Boundary

C-coordinates give o
the Rindler ke
spacetime centred O ==
on the observer a : Y
fixed distance
from r=0. p

’ {/4

Ae? \ B

r=0< Ry = ;
V1 — A2¢2
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ACCELERATION AND BLACK HOLE

If m is not zero, A gives rise to an imbalance between North and
South axes, which now have (different) conical deficits.

(14 2mA)?

e 00 dsp,g o df® + ~————0dg’
1 —2mA)?
e O —m dsgjqf) oc df? + ( KZL ) (m — 0)*de?

The axis, if regular, would look locally like the origin in polar
coordinates, but here we see different factors in the angular part:

0 1+2mA
5:|: = 27]'(1 — %) = 27(-(1 — T) - “87TIJ‘:|:”

This translates to a conical deficit, interpreted as a cosmic string.
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COSMIC STRING

T} ~ §®(r) diag (u, 11, 0, 0)

174

e
- -

A string produces a conical deficit, B \

but no long range spacetime
curvature (no tidal forces).

Strings can be threaded onto black holes,
where the conical singularity is interpreted as
an idealization of some finite width string core.

cf. Aryal, Ford, Vilenkin: PRD 34, 2263 (1986), Achucarro, Gregory, Kuijken: PRD 52 5729 (1995)
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THE SLOWLY ACCELERATING
BLACK HOLE

The slowly accelerating black hole
in AdS is displaced from centre. It
has a conical deficit running from
the horizon to the boundary. The
string tension provides the force
that hold the black hole off-centre.

The general C-metric has an acceleration
horizon, so we looked at slowly accelerating
black holes to have no ambiguity.
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THERMODYNAMICS, WITH STRINGS ATTACHED!

Want to do thermodynamics with strings, so start with a semi-
familiar case: Schwarzschild-AdS with a deficit: f = 1-2m/r+r2/¢2

Black hole horizon defined by =0, look at small changes in f.
Horizon still defined by f(r) = O.

9, 0
T_|_—|-(S7°_|_ ?"_|_ (S’T'_|_—|— f5m—|—8£€:()
Changes r+, Changes m,
hence S hence M Changes £,

hence A
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BLACK HOLE THERMODYNAMICS

Temperature has usual definition, but entropy depends on K;

f'(re) _ e
T:T; o K+ %’

-and we want to do thermodynamics including the string, so
we have to take into account varying K.

7T?°_|_5?"_|_ 2 5K
K tK2?

(S): Herdeiro, Kleihaus,Kunz,Radu: 0912:3386 [gr-qc]

05 =
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CHANGING TENSION

Tension is related to K:




FIRST LAW WITH TENSION

Putting together:

2K m
0="" (T5S 4 2(m — 1y )ou + VP — 5(E))
So identify m

M = —
K

Then also get Smarr relation:

M =2TS — 2PV
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THERMODYNAMIC LENGTH

The term multiplying the variation in tension is a
“thermodynamic length”

A=TL—m

Reinforces interpretation of M as enthalpy, if black
hole grows, it swallows some string, but has also
displaced the same amount of energy from
environment.

Kastor & Traschen: 1207:5415 [hep-th]
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BACK TO THE ACC BLACK HOLE:

Based on experience with the Kerr-AdS metric (and motivated
by the coordinate transformation for slowly accelerating Rindler)
we introduce a possible rescaling of the time coordinate

1 [ f(r  g.dpl2 X >r2 h() sin?6 [ adt
ds? = — 202 — ——dr?— do? — —
i H2{ ;ﬂ' i K} OO Sr2 [ a v

This will rescale temperature, and also changes computations of
the mass.

Im  al+ e? r2 4 g2
_ 2 2
f(T)—(l_AT)[l_ ” + =2 ] /2
2

h(f) =1+ 2mAcosf + [A2(a2 Lel) ;—2] cos?6

2
Z}=1—|—a—2cos29, H=1+ Arcos@.
r
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CHECK M, T AND S

Using the usual Euclidean method, find temperature:

i
(1= A%r2)

B

T — —
dra 2mric

m(1 — A*r?) +

Which depends on alpha, and entropy:

2
7T?°_|_
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HOLOGRAPHIC M

Expand the metric near the boundary (Fefferman-Graham):

1
-

=—At-) F.(§)2"
cos 6 :§+ZGn Er

F., and G,, determined by the requirement that

1
ds® = —02dz* + = [Vuw + 220 + 2° M, | datdz” + O(2?)
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FEFFERMAN-GRAHAM

For the boundary metric, get:

(1= 2289©)"  »  (L=AC9() 1o g

a202F2(€) F2(€)g(8)

(€) (1 — A229(¢))°

e 0

And for the boundary fluid stress tensor:

(1)) = diag{pp, —pp/2 + 11, —pp/2 — 11}

\_\_/ PE = E(l — A2€29)3/2(2 — 3A%¢%g)

(1 . A2€2g)3/2

=
™
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ACCELERATING THERMODYNAMICS

Integrate up the boundary stress-energy to get the mass:
@

M:/pE\/_:;

What is alpha? Setting m to zero, and demanding that the
boundary is a round 2-sphere gives

a=+/1— A202

Get a consistent first law with corrections to V and TD
length, and — can generalise to rotation
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GENERAL THERMO PARAMETERS

m(Z + a?/02)(1 — A%%E)

M =
KZa(l+ a?A?)
T i g _ m(r3 + a?)
 dma(r? +a?)’ K(1-A%2)°
e ery
Q K’ t (T_2|_ n az)a 3
L s T ST S WP .
p_ 3 _Am [re(r3 +a?) N mla?(1 — A2022) + A20AE(E + a2 /¢?)]
- 8me2’ - 3Ka [ (1—A%r2) (1+a242)=
o+ mE+d/P+ 41— A%PE)]  AR(Z + a2/0?)
i a(l+Ary) « (1+ a?A2%)=2 = a(l + a?A?)
7 =+ a2/02)(1 — A202Z
a
E=1——+A2(62+0,2) a:\/( / )( )

1+ a2A2
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CHEMICAL EXPRESSIONS

It is helpful to express thermodynamics in terms of the
charges, rather than geometrical quantities like r,.

It is more natural to think in terms of an overall average
deficit, and the differential deficit that produces
acceleration. We therefore encode:

A=1-2py+p-)=

| (1]

C = (I‘L—_M-i-) — mA :mA
A KA

[1]

And look at the impact of global deficit angles and
acceleration separately.

= _ 242 O 4o
R R 62(1 A“l?)
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AS Q> 8PS\’ 8PS\ /4n2J? 3C2A
PR .
M= [(1+AS+ SA) +<1+ 3A)((A5)2 zps)}

22 2 P 222 2A2
v S [(1+ﬂQ +8 S) weJ 9C ],

S AS T as? T 32p2s?
T—ﬁ (1+7rQ2 SPS) (1 71'Q2 8PS>_ELXZ§2_4OQ |
= SEA (1 T 83]19) :
— 25\2/[ (1+?§+8:£S) ’
b= o |(Ch+ ) + T (4 o) - 20 355

RG & Scoins, 1904.09660
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NEW REVERSE
ISOPERIMETRIC INEQUALITY

Now can manipulate
3V\2 /m\4_ (3xMV C2\*®_ «wM?2

M{—) () 2 — >
AR

INto a new inequality appropriate for conical deficit
black holes:

3V _ L [AY
A7t — A \4rx
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“C” ]N 3

We can look for an exact solution in 3D with the same type
of structure:

1 dy?

ds® = dr? —

A%(z —y)? Ply) P(y)

With general solution: Q(z) =c+ bz + az?,

Which, after coordinate rescaling/shifts reduces to:

Class | Q(z) P(y) Maximal range of x
I 1-2? | 2+ @2 -1) lz| < 1
I |22-1| pa+(1-¢?)| z>lorz< -1

III || 1+2? | 5z — (1+9°) R

Arenas-Henriquez, RG, Scoins: 2202:08823; Anber 0809:2789; Astorino 1101.2616
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ACCELERATING PARTICLE

Take each in turn. The first class looks very similar to the 4D
C-metric (r=-1/Ay, t = at/A, X = cos(¢/K))

1 f(fr)dt2 dr? _Tzdibz
1+ Arcos (¢/K)]? a?  f(r) K?
,’,,2

£2

ds® =

flr) =1+ (1— A%%)

Slow Acceleration Al < 1 No horizon

Rapid Acceleration ~A¢ > 1 Acc. horizon
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SLOW ACCELERATION

The presence of K now indicates both a conical deficit (the
particle) and a domain wall at ¢==m, i.e. codimension 1
defect. The conical deficit at r=0 has a natural mass:

1,1
Me =4 K

Because of the nonzero extrinsic curvature along ¢== ,
(thanks to A) there is a wall of tension °»

o= %sin (%)
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SLOW ACCELERATION

We can do the same coord
transformation as in the 4D
slow acceleration case, to
get the same sort of
picture:

A determines the
displacement from origin,
and x, both the particle
“mass” and wall tension.

X=1=x
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PARTICLE MASS?

Can follow the same Fefferman-Graham prescription as for
4D, giving the expected boundary metric:

w(f)g [d’T2 —A2€2 d£2 ]

Yo = A2
And, after setting alpha to the same value as 4D, the

Mass:

t (=
M = —i T_ arctan e (K)
8 \ 2 V1 — A2/2
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HOLOGRAPHIC MASS

Compare to “particle” mass from conical deficit:

0.10
A/=0.999
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NEW SOLUTIONS?

Although these have been derived as “new” solutions, we
know that in 3D, gravity does not propagate, so any
"vacuum” solution has to be locally equivalent to AdS. The
transformation formulae for the various solutions are quite
lengthy, but give an interesting alternative viewpoint, and
help with understanding the “BTZ” family of solutions.
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RAPIDLY ACCELERATING LIGHT PARTICLE

Main difference to 4D: no accelerating partner!
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ACCELERATION WITH STRUTS

—
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RAPIDLY ACCELERATING HEAVY PARTICLE
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BTZ’S

Adding A in the class 2’s
skews the constant ¢ lines,
changing the way AdS is
sliced and adding extrinsic
curvature to constant ¢—
lines — here is a slightly
distorted BTZ (slow
acceleration)

Pirsa: 23050107 Page 36/38



RECAP

» Have shown how to allow for varying tension in
thermodynamics of black holes.

» Conjugate variable is Thermodynamic Length

» Thermodynamics of accelerating black holes is computable
— non-static and non-isolated.

= A key technical point is the normalisation of timelike Killing
vector

= Have derived extensive expressions for the TD variables and
a new Reverse Isoperimetric Inequality.

= Three dimensions is both familiar and new!
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Rapidly accelerating heavy particle — full bulk.

-10 205 0.0
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