Title: Two loops and Higgs field space geometries; pushing the interpretation of LHC data forward in the SMEFT
Speakers: Michael Trott
Series: Particle Physics
Date: May 12, 2023-11:00 AM
URL: https://pirsa.org/23050084
Abstract: Getting the strongest physics conclusions from collider particle physics experiments regarding the (in)consistency of the Standard Model with actual measurements requires Effective Field Theory techniques. This approach (known as the SMEFT) has been rapidly advanced in recent years, leading to new analyses of the data being executed by Atlas and CMS. The current state of the theoretical art is not precise enough as such EXP studies are continued into the future, as the measurements continue to become more precise. We need to be able to calculate more precisely in the SMEFT to keep up. After an intro to this area of research, I will discuss some recent calculations that have pushed things to the two loop level in precision for higgs production/decay in the SMEFT, and how thinking geometrically (in terms of field space connections and the resulting Higgs geometries) in EFT is the key to keep advancing the theoretical state of the art.

Zoom link: https://pitp.zoom.us/j/99931154202?pwd=SUMzK2JIS0prNk5KaGZWakphckZhdz09

Two loops and Higgs Field Space geometries.

Mike Trott (Perimeter/Caltech)
Related paper this week: Martin and Trott https://arxiv.org/abs/2305.05879

VILLUM FONDEN

Modern SMEFT Analysis: ATLAS-PHYS-PUB-2022-037

What was discovered at LHC, a particle

- Discovery of (Higgs like) Meaning $J^{P} \sim 0^{+}$ particle in 2012

$$
\begin{aligned}
\mathcal{L}_{\mathrm{SM}} & =-\frac{1}{4} G_{\mu \nu}^{A} G^{A \mu \nu}-\frac{1}{4} W_{\mu \nu}^{I} W^{I \mu \nu}-\frac{1}{4} B_{\mu \nu} B^{\mu \nu}+\left(D_{\mu} H^{\dagger}\right)\left(D^{\mu} H\right)+\sum_{\psi=q, u, d, l, e} \bar{\psi} i \not D \psi \\
& -\lambda\left(H^{\dagger} H-\frac{1}{2} v^{2}\right)^{2}-\left[H^{\dagger j} \bar{d} Y_{d} q_{j}+\widetilde{H}^{\dagger j} \bar{u} Y_{u} q_{j}+H^{\dagger j} \bar{e} Y_{e} l_{j}+\text { h.c. }\right]
\end{aligned}
$$

What wasn't discovered at LHC

What wasn't discovered at LHC

Deviations then look like local contact operator effects in EFT
Michael Trott, Caltech/Perimeter

When you do measurements below a particle threshold..

Infrared singularities and massive fields Thomas Appelquist and J. Carazzone Phys. Rev. D 11, 2856 - Published 15 May 1975

- The effects of heavy physics are localised, essentially, by the uncertainty principle

When you do measurements below a particle threshold

Infrared singularities and massive fields Thomas Appelquist and J. Carazzone
Phys. Rev. D 11, 2856 - Published 15 May 1975

- You can Taylor expand in LOCAL functions (operators)

$$
\left\rangle \sim O_{S M}^{0}+\frac{f_{1}(s, t, u)}{M_{\text {heavy }}^{2}}+\frac{f_{2}(s, t, u)}{M_{\text {heavy }}^{4}}+\cdots\right.
$$

$$
\mathcal{L}_{S M E F T}=\mathcal{L}_{S M}+\mathcal{L}^{(5)}+\mathcal{L}^{(6)}+\mathcal{L}^{(7)}+\ldots, \quad \mathcal{L}^{(d)}=\sum_{i=1}^{n_{d}} \frac{C_{i}^{(d)}}{\Lambda^{d-4}} Q_{i}^{(d)} \text { for } d>4,
$$

UV dependent Wilson coefficient and suppression scale

How does it help to have this simplification?

-What sort of deviations are then allowed experimentally?

How does it help to have this simplification?

- What sort of deviations are then allowed experimentally?

- BY FAR the majority of experimental analysis effort has been about bumps

This simplification is extremely helpful!

This simplification is extremely helpful!

This simplification is extremely helpful!

Alternate approach

$$
\mathcal{L}=\mathcal{L}_{S M}+\mathcal{L}_{\text {model }}
$$

And perform a global SMEFT fit once and for all.

Benefit: many IR physics Parts of calc are the SAME And this is captured in EFT

The SMEFT is a key tool for interpreting ?deviations? like:

High-precision measurement of the W boson mass with the CDF II detector

```
Authorsinto 8Affilations
#M,", 早口"(D
```

- Any one measurement will just dictate a parameter in a theory. But a PATTERN of measurements can falsify a theory. We need to study the Global data set in SMEFT.
- SMEFT allows the experimental pattern to deviation From the SM expectation - while still doing well Defined field theory.

Find deviations

Follow pattern to underlying mode

Inputs also needed -SMEFT Muon decay

- Decay of $\mu^{-} \rightarrow e^{-}+\bar{\nu}_{e}+\nu_{\mu}$ still measured far below the W pole.
1312.2014 Alonso, Jenkins, Manohar, Trott
- Still probes the effective lagrangian

$$
\mathcal{L}_{G_{F}}=-\frac{4 \mathcal{G}_{F}}{\sqrt{2}}\left(\bar{\nu}_{\mu} \gamma^{\mu} P_{L} \mu\right)\left(\bar{e} \gamma_{\mu} P_{L} \nu_{e}\right)
$$

So now

$$
-\frac{4 \mathcal{G}_{F}}{\sqrt{2}}=-\frac{2}{v_{T}^{2}}+\left(\frac{C}{\Lambda^{\mu \mu e e \mu}} \frac{C}{\Lambda^{e \mu \mu e}}\right)-2\left(\frac{C_{H l}^{(3)}}{\Lambda^{2} e e}+\frac{C_{T}^{(3)}}{\Lambda^{H \mu \mu}}\right)
$$

- Tons of work to redefine things at dim 6 , can we go to dim 8 ?

Due to SMEFTsim the experimentalists have stepped up

- As this evolves forward, we need precise and consistent SMEFT results for these LHC two processes, and EWPD in particular.

Due to SMEFTsim the experimentalists have stepped up

- As this evolves forward, we need precise and consistent SMEFT results for these LHC two processes, and EWPD in particular.

An instant pay off of "geoSMEFT"

- Growth in operator forms in connections Always saturate to fixed number, this is just the simplest organization exploiting this
- Once we have things to dim eight it is sufficient in many observables

Mases
Couplings and mixing angles
TGC, Higgs to ZZ,WW
QGC,TGC + Higgs
$Y_{p r}^{u}(\phi) \bar{Q} u+$ h.c.
$Y_{p r}^{d}(\phi) \bar{Q} d+$ h.c.
$Y_{p r}^{e}(\phi) \bar{L} e+$ h.c.
$d_{A}^{e, p r}(\phi) \bar{L} \sigma_{\mu \nu} e \mathcal{W}_{A}^{\mu \nu}+$ h.c.
$d_{A}^{u, p r}(\phi) \bar{Q} \sigma_{\mu \nu} u \mathcal{W}_{A}^{\mu \nu}+$ h.c.
$d_{A}^{d, p r}(\phi) \bar{Q} \sigma_{\mu \nu} d \mathcal{W}_{A}^{\mu \nu}+$ h.c.
$L_{p r, A}^{\psi_{R}}(\phi)\left(D^{\mu} \phi\right)^{J}\left(\bar{\psi}_{p, R} \gamma_{\mu} \sigma_{A} \psi_{r, R}\right)$

| $L_{p r, A}^{\psi_{L}}(\phi)\left(D^{\mu} \phi\right)^{J}\left(\bar{\psi}_{p, L} \gamma_{\mu} \sigma_{A} \psi_{r, L}\right)$ | $2 N_{f}^{2}$ | $4 N_{f}^{2}$ | $4 N_{f}^{2}$ | $4 N_{f}^{2}$ | $4 N_{f}^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Mass Dimension

Field space connection	6	8	10	12	14
$h_{I J}(\phi)\left(D_{\mu} \phi\right)^{I}\left(D^{\mu} \phi\right)^{J}$	2	2	2	2	2
$g_{A B}(\phi) \mathcal{W}_{\mu \nu}^{A} \mathcal{W}^{B, \mu \nu}$	3	4	4	4	4
$k_{I J A}(\phi)\left(D^{\mu} \phi\right)^{I}\left(D^{\nu} \phi\right)^{J} \mathcal{W}_{A}^{A}$	0	3	4	4	4
$f_{A B C}\left(\phi \mathcal{W}_{\mu \nu}^{A} \mathcal{W}^{B, \nu \rho} \mathcal{W}_{\rho}^{C, \mu}\right.$	1	2	2	2	2
$Y_{p r}^{u}(\phi) \bar{Q} u+$ h.c.	$2 N_{f}^{2}$				
$Y_{p r}^{d}(\phi) \bar{Q} d+$ h.c.	$2 N_{f}^{2}$				
$Y_{p r}^{e}(\phi) \bar{L} e+$ h.c.	$2 N_{f}^{2}$				
$d_{A}^{e, p r}(\phi) \bar{L} \sigma_{\mu \nu} e \mathcal{W}_{A}^{\mu \nu}+$ h.c.	$4 N_{f}^{2}$	$6 N_{f}^{2}$	$6 N_{f}^{2}$	$6 N_{f}^{2}$	$6 N_{f}^{2}$
$d_{A}^{u, p r}(\phi) \bar{Q} \sigma_{\mu \nu} u \mathcal{W}_{A}^{\mu}+$ h.c.	$4 N_{f}^{2}$	$6 N_{f}^{2}$	$6 N_{f}^{2}$	$6 N_{f}^{2}$	$6 N_{f}^{2}$
$d_{A}^{d, p r}(\phi) \bar{Q} \sigma_{\mu \nu} d \mathcal{W}_{A}^{\mu \nu}+$ h.c.	$4 N_{f}^{2}$	$6 N_{f}^{2}$	$6 N_{f}^{2}$	$6 N_{f}^{2}$	$6 N_{f}^{2}$
$L_{p r, A}^{\psi_{R}(\phi)\left(D^{\mu} \phi\right)^{J}\left(\bar{\psi}_{p, R} \gamma_{\mu} \sigma_{A} \psi_{r, R}\right)}$	N_{f}^{2}	N_{f}^{2}	N_{f}^{2}	N_{f}^{2}	N_{f}^{2}
$L_{p r, A}^{\psi_{L}}(\phi)\left(D^{\mu} \phi\right)^{J}\left(\bar{\psi}_{p, L} \gamma_{\mu} \sigma_{A} \psi_{r, L}\right)$	$2 N_{f}^{2}$	$4 N_{f}^{2}$	$4 N_{f}^{2}$	$4 N_{f}^{2}$	$4 N_{f}^{2}$

Yukawas

Dipoles
W, Z couplings to fermions +higgs
2001.01453 Helset, Martin, Trott

Field coord. invariance leads to field space geometry

$$
\mathcal{L}_{S M E F T}=\frac{1}{2} h_{I J}(\phi)\left(D_{\mu} \phi\right)^{I}\left(D_{\mu} \phi\right)^{J}-\frac{1}{4} g_{A B}(\phi) \mathcal{W}_{\mu \nu}^{A} \mathcal{W}_{\mu \nu}^{B}+\cdots
$$

- Dimensionless expansion into operator bases $\quad \tilde{C}_{i}=\frac{\left\langle H^{\dagger} H\right\rangle}{\Lambda^{2}} C_{i}$
$\sqrt{h}^{I J}=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1-\frac{1}{4} \tilde{C}_{H D} & 0 \\ 0 & 0 & 0 & 1+\tilde{C}_{H \square}-\frac{1}{4} \tilde{C}_{H D}\end{array}\right] \quad \sqrt{g}^{A B}=\left[\begin{array}{cccc}1+\tilde{C}_{H W} & 0 & 0 & 0 \\ 0 & 1+\tilde{C}_{H W} & 0 & 0 \\ 0 & 0 & 1+\tilde{C}_{H W} & -\tilde{C}_{H W B} \\ 0 & 0 & -\frac{\tilde{C}_{H W B}}{2} & 1+\tilde{C}_{H B}\end{array}\right]$
(Small perturbations so positive semi-definite matrix and unique square root)
- Geometric field space quantities are useful (True independent of mass dimension of ops) Amp. perturb. are:

$$
\mathcal{A} \simeq \mathcal{A}_{S M}+\langle\mathcal{O}\rangle_{1} N_{1}^{\text {Fun. of } 4 \text { vectors (kinematics) }} \begin{aligned}
& \langle\mathcal{O}\rangle_{2} N_{2}+\cdots \\
& \text { Defined by field space geometries }
\end{aligned}
$$

Simple all orders results for the vev expansion

- Glue Glue higgs

$$
\langle h \mid \mathcal{G G}\rangle=-\frac{\sqrt{h}^{44}}{4}\left\langle h \mathcal{G}_{\mu \nu} \mathcal{G}^{\mu \nu}\right\rangle \frac{\delta \kappa_{A A}}{\delta \phi_{4}}
$$

- Higgs to gamma gamma

$$
\left.\left\langle h \mid \mathcal{A}\left(p_{1}\right) \mathcal{A}\left(p_{2}\right)\right\rangle=-\left\langle h A^{\mu \nu} A_{\mu \nu}\right\rangle \frac{\sqrt{h}}{4}\left[\left\langle\frac{\delta g_{33}(\phi)}{\delta \phi_{4}}\right\rangle \frac{\bar{e}^{2}}{g_{2}^{2}}+2\left\langle\frac{\delta g_{34}(\phi)}{\delta \phi_{4}}\right\rangle \frac{\bar{e}^{2}}{g_{1} g_{2}}+\left\langle\frac{\delta g_{44}(\phi)}{\delta \phi_{4}}\right\rangle\right\rangle \bar{e}^{2}\right],
$$

- Where the geometric electric charge is $\quad \bar{e}=g_{2}\left(s_{\bar{\theta}} \sqrt{g}^{33}+c_{\bar{\theta}} \sqrt{g}^{34}\right)$

$$
s_{\bar{\theta}}^{2}=\frac{\left(g_{1} \sqrt{g}^{44}-g_{2} \sqrt{g}^{34}\right)^{2}}{g_{1}^{2}\left[\left(\sqrt{g}^{34}\right)^{2}+\left(\sqrt{g}^{44}\right)^{2}\right]+g_{2}^{2}\left[\left(\sqrt{g}^{3}\right)^{2}+\left(\sqrt{9}^{34}\right)^{2}\right]-2 g_{1} g_{2} \sqrt{g}^{34}\left(\sqrt{g^{33}}+\sqrt{g}^{44}\right)} .
$$

LO SMEFT perturbation to the SM predictions

- Modifications to the properties of the Higgs boson

Aneesh V. Manohar (UC, San Diego), Mark B. Wise (Caltech) (Jan, 2006) Published in: Phys.Lett.B 636 (2006) 107-113 • e-Print: hep-ph/0601212 [hep-ph]

$$
\frac{\sigma(g g \rightarrow h)}{\sigma^{\mathrm{SM}}(g g \rightarrow h)} \simeq \frac{\Gamma(h \rightarrow g g)}{\Gamma^{\mathrm{SM}}(h \rightarrow g g)} \simeq\left|1-\frac{8 \pi^{2} v^{2} c_{G}}{\Lambda^{2} I^{g}}\right|^{2} \quad \delta \mathcal{L}=-\frac{c_{G} g_{3}^{2}}{2 \Lambda^{2}} H^{\dagger} H G_{\mu \nu}^{A} G^{A \mu \nu}
$$

$$
I^{g}=I_{f}\left(m_{h}^{2} /\left(4 m_{t}^{2}\right), 0\right)\left(1+\frac{11}{4} \frac{\alpha_{s}}{\pi}\right), \longleftarrow \text { Partial } 2 \text { loop result, the } 2 \text { loop matching }
$$

$$
I_{f}(a, b)=\int_{0}^{1} \mathrm{~d} x \int_{0}^{1-x} \mathrm{~d} y \frac{1-4 x y}{1-4(a-b) x y-4 b y(1-y)-i 0^{+}}
$$

SM results at LO: Gluon Annihilation in Proton Proton Collisions, Phys. Rev. Lett. 40 (1978) 692.

LO SMEFT perturbation to the SM predictions

- Modifications to the properties of the Higgs boson

Aneesh V. Manohar (UC, San Diego), Mark B. Wise (Caltech) (Jan, 2006)
Published in: Phys.Lett.B 636 (2006) 107-113 • e-Print: hep-ph/0601212 [hep-ph]

$$
\begin{aligned}
& \frac{\Gamma(h \rightarrow \gamma \gamma)}{\Gamma^{\mathrm{SM}}(h \rightarrow \gamma \gamma)} \simeq\left|1-\frac{4 \pi^{2} v^{2} c_{\gamma \gamma}}{\Lambda^{2} I \gamma}\right|^{2} \\
& c_{\gamma \gamma}=c_{W}+c_{B}-c_{W B} \\
& \delta \mathcal{L}=-\frac{c_{B} g_{1}^{2}}{2 \Lambda^{2}} H^{\dagger} H B_{\mu \nu} B^{\mu \nu}-\frac{c_{W B} g_{1} g_{2}}{2 \Lambda^{2}} H^{\dagger} \tau^{a} H B_{\mu \nu} W^{a \mu \nu}-\frac{c_{W} g_{2}^{2}}{2 \Lambda^{2}} H^{\dagger} H W_{\mu \nu}^{a} W^{a \mu \nu} \quad-\frac{c_{G} g_{3}^{2}}{2 \Lambda^{2}} H^{\dagger} H G_{\mu \nu}^{A} G^{A \mu \nu}
\end{aligned}
$$

- We have improved both of these processes to consistent dimension 8 and one more loop order. (A short 17 years later!)

LO SMEFT perturbation to the SM predictions

- Modifications to the properties of the Higgs boson

Aneesh V. Manohar (UC, San Diego), Mark B. Wise (Caltech) (Jan, 2006)
Published in: Phys.Lett.B 636 (2006) 107-113 • e-Print: hep-ph/0601212 [hep-ph]

$$
\begin{aligned}
& \frac{\Gamma(h \rightarrow \gamma \gamma)}{\Gamma^{\mathrm{SM}}(h \rightarrow \gamma \gamma)} \simeq \left\lvert\, 1-\frac{\left.4 \pi{\sqrt{2} v^{2} c_{\gamma \gamma}}_{\Lambda^{2} I^{\gamma}}\right|^{2}}{}\right. \\
& c_{\gamma \gamma}=c_{W}+c_{B}-c_{W B} \\
& \delta \mathcal{L}=-\frac{c_{1} g_{1}^{2}}{2 \Lambda^{2}}{ }^{\dagger} H B_{\mu \nu} B^{\mu \nu}-\frac{c_{\mathrm{W}}{ }_{B} g_{1} g_{2}}{2 \Lambda^{2}} I^{\dagger} \tau^{a} H B_{\mu \nu} W^{a \mu \nu}-\frac{c_{4} g_{2}^{2}{ }_{H}^{\dagger}}{2 \Lambda^{2}} H W_{\mu \nu}^{a} W^{a \mu \nu} \quad-\frac{c\left(g_{3}^{2}\right.}{2 \Lambda^{2}} H^{\dagger} H G_{\mu \nu}^{A} G^{A \mu \nu}
\end{aligned}
$$

- Doing this in that timeframe is actually not so bad!

Need to include SMEFT loop corrections and operator corrections to actual processes AND the input parameter processes used to fix the Lagrangian terms.

The Relevant Tower of EFT's

SMEFT renormalised.. as was LEFT

- SMEFT RGE's
- Each dot can be 59 types operator

Subset of the one loop matching.

One loop vev extraction

One loop matching onto the LEFT operator: $\quad \mathcal{L}_{L E F T} \supset L^{V, L L}\left(\bar{\nu}_{L, \mu} \gamma^{\mu} \nu_{L, e}\right)\left(\bar{e}_{L} \gamma_{\mu} \mu_{L}\right)$.

Δ : Loop expansion

δ : Higher dimensional op (vev) expansion

$$
\begin{aligned}
\bar{v}_{T}^{2} \Delta L^{V, L L} & =\frac{\left(7 \bar{m}_{h}^{4}+\bar{m}_{h}^{2}\left(2 m_{t}^{2} N_{c}-5\left(2 \bar{m}_{W}^{2}+\bar{m}_{Z}^{2}\right)\right)+4\left(-4 m_{t}^{4} N_{c}+2 \bar{m}_{W}^{4}+\bar{m}_{Z}^{4}\right)\right)}{16 \pi^{2} \bar{m}_{h}^{2} \bar{v}_{T}^{2}} \\
& +\frac{3\left(\bar{m}_{h}^{4}-2 \bar{m}_{h}^{2} \bar{m}_{W}^{2}\right)}{8 \pi^{2} \bar{v}_{T}^{2}\left(\bar{m}_{h}^{2}-\bar{m}_{W}^{2}\right)} \log \left(\frac{\mu^{2}}{\bar{m}_{h}^{2}}\right)+\frac{m_{t}^{2} N_{c}\left(\bar{m}_{h}^{2}-4 m_{t}^{2}\right)}{4 \pi^{2} \bar{m}_{h}^{2} \bar{v}_{T}^{2}} \log \left(\frac{\mu^{2}}{m_{t}^{2}}\right), \\
& +\frac{3\left(\left(\bar{m}_{h}^{2}\left(\bar{m}_{Z}^{4}-2 \bar{m}_{W}^{2} \bar{m}_{Z}^{2}\right)+2 \bar{m}_{Z}^{4}\left(\bar{m}_{W}^{2}-\bar{m}_{Z}^{2}\right)\right)\right.}{8 \pi^{2} \bar{m}_{h}^{2} \bar{v}_{T}^{2}\left(\bar{m}_{W}^{2}-\bar{m}_{Z}^{2}\right)} \log \left(\frac{\mu^{2}}{\bar{m}_{Z}^{2}}\right), \\
& -\frac{3 \bar{m}_{W}^{2}\left(\bar{m}_{h}^{4}\left(\bar{m}_{W}^{2}-2 \bar{m}_{Z}^{2}\right)+\bar{m}_{h}^{2}\left(7 \bar{m}_{W}^{2} \bar{m}_{Z}^{2}-6 \bar{m}_{W}^{4}\right)+4 \bar{m}_{W}^{4}\left(\bar{m}_{W}^{2}-\bar{m}_{Z}^{2}\right)\right)}{8 \pi^{2} \bar{m}_{h}^{2} \bar{v}_{T}^{2}\left(\bar{m}_{h}^{2}-\bar{m}_{W}^{2}\right)\left(\bar{m}_{W}^{2}-\bar{m}_{Z}^{2}\right)} \log \left(\frac{\mu^{2}}{\bar{m}_{W}^{2}}\right)
\end{aligned}
$$

Need to add back photon loops canceling in matching:

$$
\Delta L_{e w}^{V, L L}=-\frac{\alpha}{4 \pi}\left(\pi^{2}-\frac{25}{4}\right) \underset{\substack{(1968) \\ \text { (G. Kall. }}}{\text { Radiative corrections in elementary particle physics, Springer Tracts Mod. Phys. } 46}
$$

End result: $\quad-\frac{4 \hat{G}_{F}}{\sqrt{2}}:=-\frac{2}{\bar{v}_{T}^{2}}\left(1+\Delta L_{e w}^{V, L L}\right)+\Delta L^{V, L L}-2 \sqrt{2} \frac{\delta G_{F}}{\bar{v}_{T}^{2}}$

GeoSMEFT based loop corrections.

- Many groups calculate in the background field gauge fixing with a geoSMEFT gauge fixing term

$$
\begin{aligned}
\mathcal{L}_{\mathrm{GF}} & =-\frac{\hat{g}_{A B}}{2 \xi} \mathcal{G}^{A} \mathcal{G}^{B}, \\
\mathcal{G}^{X} & \equiv \partial_{\mu} \mathcal{W}^{X, \mu}-\tilde{\epsilon}_{C D}^{X} \hat{\mathcal{W}}_{\mu}^{C} \mathcal{W}^{D, \mu}+\frac{\xi}{2} \hat{g}^{X C} \phi^{I} \hat{h}_{I K} \tilde{\gamma}_{C, J}^{K} \hat{\phi}^{J} .
\end{aligned} \quad \text { 1803.08001 Helset, Paraskevas,Trott. }
$$

- Immediate BFM Ward Identities were derived:

$$
\begin{aligned}
0= & \left(\partial^{\mu} \delta_{B}^{A}-\tilde{\epsilon}_{B C}^{A}\right. \\
& \left.\left.+\hat{\mathcal{W}}^{C, \mu}\right) \frac{\delta \Gamma}{\delta \hat{\mathcal{W}}_{A}^{\mu}}-\frac{\tilde{\gamma}_{B, J}^{I}}{2} \hat{\phi}^{J} \frac{\delta \Gamma}{\delta \bar{\phi}_{j}^{J}} \quad \text { I } \hat{\Lambda}_{B, i} \frac{\delta \Gamma}{\delta \bar{f}_{i}}-\frac{\delta \Gamma}{\delta f_{i}} \Lambda_{B, j}^{i} f_{j}\right) .
\end{aligned}
$$

And checked $\underline{2010.08451}$ Corbett, Trott $\underline{2010.15852}$ Corbett

- at one loop in the results. It works.

Consistency checks at one loop/dim8

Benefits of the Background Field method one loop approach in SMEFT.

- Cross checks/understanding afforded (Ward identities and more).
- One loop redefinition of input parameters INDIVIDUALLY gauge independent.
- Cross checks of

$$
\begin{array}{ll}
\Delta Z_{e}=-\frac{1}{2} \Delta Z_{\hat{\mathcal{A}}}, & \text { Our calc in } \underline{2107.07470} \\
\Delta R_{e}=-\frac{1}{2} \Delta R_{\hat{\mathcal{A}}} . & \text { Stoffer/Denkens in } \underline{1908.05295}
\end{array}
$$

$$
\Delta R_{\mathcal{A}}=\frac{\bar{g}^{2} \bar{g}_{2}^{2}}{\left(\bar{g}_{1}^{2}+\bar{g}_{2}^{2}\right)}\left[-\frac{7}{16 \pi^{2}} \log \left(\frac{\mu^{2}}{\bar{m}_{W}^{2}}\right)+\sum_{\psi} \frac{N_{c}^{\psi} Q_{\psi}^{2}}{12 \pi^{2}} \log \left(\frac{\mu^{2}}{\bar{m}_{\psi}^{2}}\right)-\frac{1}{24 \pi^{2}}\right] .
$$

Cross checks worked out

Cancelation of large mt dependent logs in relations between observables: Expected and anticipated in 1505.02646 Hartmann, Trott

- Expected cancelation confirmed in $\underline{2107.07470}$ and $\underline{1908.05295}$

$$
\begin{aligned}
& \bar{v}_{T}=\hat{v}_{T}\left[1+\frac{2 y_{t}^{2}}{16 \pi^{2}} N_{C} \frac{m_{f}^{2}}{\bar{m}_{h}^{2}}\left[1+\log \left(\frac{\mu^{2}}{m_{f}^{2}}\right)\right]+\cdots\right] . \\
& \frac{\Delta v}{\bar{v}_{T}} \propto-\frac{2 y_{t}^{2}}{16 \pi^{2}} N_{C} \frac{m_{f}^{2}}{\bar{m}_{h}^{2}}\left[1+\log \left(\frac{\mu^{2}}{m_{f}^{2}}\right)\right] .
\end{aligned}
$$

- Cancelation in single Higgs, single dev observables with tadpole term and GF extraction. We both use the FJ tadpole scheme.

NLO EFT - fix finite terms

- Define vev of the theory as the one point function vanishing - fixes Δv

$$
\begin{aligned}
h & m_{h}^{2} h v \frac{1}{16 \pi^{2}}[\\
T & -16 \pi^{2} \frac{\Delta v}{v}+3 \lambda\left(1+\log \left[\frac{\mu^{2}}{m_{h}^{2}}\right]\right)+\frac{m_{W}^{2}}{v^{2}} \xi\left(1+\log \left[\frac{\mu^{2}}{\xi m_{W}^{2}}\right]\right) \\
& +\frac{1}{2} \frac{m_{Z}^{2}}{v^{2}} \xi\left(1+\log \left[\frac{\mu^{2}}{\xi m_{Z}^{2}}\right]\right)-\frac{1}{2} \sum_{i} y_{i}^{4} N_{c} \frac{1}{\lambda}\left(1+\log \left[\frac{\mu^{2}}{m_{i}^{2}}\right]\right) \\
& \left.+\frac{g_{2}^{2}}{2} \frac{m_{W}^{2}}{m_{h}^{2}}\left(1+3 \log \left[\frac{\mu^{2}}{m_{W}^{2}}\right]\right)+\frac{1}{4}\left(g_{1}^{2}+g_{2}^{2}\right) \frac{m_{Z}^{2}}{m_{h}^{2}}\left(1+3 \log \left[\frac{\mu^{2}}{m_{Z}^{2}}\right]\right)\right] .
\end{aligned}
$$

- How do we deal with tadpoles? FJ tadpole scheme
J. Fleischer and F. Jegerlehner, Radiative Corrections to Higgs Decays in the Extended Weinberg-Salam Model, Phys. Rev. D23 (1981) 2001.

One point function vanishes, so drop tadpoles. Include Δv when expanding around min.

Consistency checks at one loop/dim8

- Gauge independence of a common partial matrix element in single Higgs processes

(a)

(b)

Figure 2. One loop contributions to $\left\langle\phi_{4} \mid F F\right\rangle\left\langle\frac{\delta M_{A B}}{\delta \phi_{4}}\right\rangle$.

$$
\frac{\left\langle\phi_{4} F\left(p_{1}\right) F\left(p_{2}\right)\right\rangle^{1}}{\left\langle\phi_{4} F^{\mu \nu} F_{\mu \nu}\right\rangle^{0}\left\langle\frac{\delta M_{A B}(\phi)}{\delta \phi_{4}}\right\rangle^{0}} \propto M_{1}
$$

- This common sub diagram contribution to $\sigma(\mathcal{C \mathcal { G }} \rightarrow h), \Gamma(h \rightarrow \gamma \gamma)$ is gauge independent:

$$
\begin{gathered}
M_{1} \equiv\left(\frac{\Delta R_{h}}{2}+\frac{\Delta v}{v}+\frac{(\sqrt{3} \pi-6) \lambda}{16 \pi^{2}}+\frac{1}{16 \pi^{2}}\left(\frac{\bar{g}_{1}^{2}}{4}+\frac{3 \bar{g}_{2}^{2}}{4}+6 \lambda\right) \log \left[\frac{\bar{m}_{h}^{2}}{\mu^{2}}\right]\right) \\
+\frac{1}{16 \pi^{2}}\left(\frac{\bar{g}_{1}^{2}}{4} \mathcal{I}\left[\bar{m}_{Z}\right]+\left(\frac{\bar{g}_{2}^{2}}{4}+\lambda\right)\left(\mathcal{I}\left[\bar{m}_{Z}\right]+2 \mathcal{I}\left[\bar{m}_{W}\right]\right)\right)
\end{gathered}
$$

Best practice example in SMEFT (3 schemes)

$\frac{\Gamma_{S M E F T}}{\hat{\Gamma}_{S M}} \simeq 1+S_{1}\left[f_{1}+\left(\tilde{C}_{H \square}^{(6)}-\frac{\tilde{C}_{H D}^{(6)}}{4}\right) f_{1}+f_{2}\right]+S_{2} f_{1}^{2}+S_{3}\left(\tilde{C}_{H W}^{(6)}-\tilde{C}_{H B}^{(6)}\right)^{2}+S_{4} \delta G_{F}^{(6)} \tilde{C}_{H B}^{(6)}$,
$+S_{5} \delta G_{F}^{(6)} \tilde{C}_{H W}^{(6)}+S_{6} \delta G_{F}^{(6)} \tilde{C}_{H W B}^{(6)}+S_{7} \tilde{C}_{H D}^{(6)} \tilde{C}_{H B}^{(6)}+S_{8} \tilde{C}_{H D}^{(6)} \tilde{C}_{H W}^{(6)}+S_{9} \tilde{C}_{H D}^{(6)} \tilde{C}_{H W B}^{(6)}$,
$+S_{10} \tilde{C}_{H W B}^{(6)} \tilde{C}_{H B}^{(6)}+S_{11} \tilde{C}_{H W B}^{(6)} \tilde{C}_{H W}^{(6)}+S_{12}\left(\tilde{C}_{H W B}^{(6)}\right)^{2}+S_{13} \tilde{C}_{H B}^{(6)}+S_{14} \tilde{C}_{H W}^{(6)}$,
$+\left[S_{15}+S_{16} \log \left(\frac{\hat{m}_{h}^{2}}{\Lambda^{2}}\right)\right] \tilde{C}_{H W B}^{(6)}+\left[S_{17}+S_{18} \log \left(\frac{\hat{m}_{h}^{2}}{\Lambda^{2}}\right)\right] \tilde{C}_{W}^{(6)}$,
$+\left[S_{19}+S_{20} \log \left(\frac{\hat{m}_{h}^{2}}{\Lambda^{2}}\right)\right] \operatorname{Re} \tilde{\mathrm{C}}_{\overrightarrow{33}}^{(6)}+\left[S_{21}+S_{22} \log \left(\frac{\hat{m}_{h}^{2}}{\Lambda^{2}}\right)\right] \operatorname{Re}_{\underset{33}{ }}^{(6)}+S_{23} \operatorname{Re} \tilde{\mathrm{C}}_{\frac{4 H}{(6)}}^{(6)}$,
$+S_{24} \operatorname{Re} \tilde{C}_{d H}^{(6)}+S_{25}\left(\tilde{C}_{H \square}^{(6)}-\frac{\tilde{C}_{H D}^{(6)}}{4}\right)+S_{26} \tilde{C}_{H D}^{(6)}+S_{27} \tilde{C}_{H W B}^{(6)}+S_{28} \sqrt{2} \delta G_{F}^{(6)}$

- Here

$f_{1}^{\text {mw }}=\left[\tilde{c}_{H B}^{(G)}+0.29 \dot{c}_{I W}^{(G)}-0.5 \tilde{c}_{I W B}^{(G)}\right]$,
$f_{2}^{(\hbar w}=\left[\tilde{c}_{H B}^{(G)}+0.29\left(\tilde{c}_{H W}^{(S)}+\tilde{c}_{H W_{2}}^{(S)}\right)-0.54 \bar{c}_{H W B}^{(S)}\right]$
$f_{3}^{\hbar_{3}^{W}}=\left[\tilde{C}_{H W}^{(G)}-\tilde{C}_{H B}^{(6)}-0.6 \tilde{C}_{H W B}^{(G)}\right]$
- Significant input parameter Dependence in what you get. This is expected. 2305.05879

	S_{1}	S_{2}		S_{3}	S_{4}	S_{5}		S_{6}	S_{7}		S_{8}		S_{9}	S_{10}
\hat{M}_{W}	-753	1.41×10^{5}		321	2041	586		-1093	897		721		-914	1880
$\hat{\alpha}_{e w}^{\left(\hat{M}_{z}\right)}$	-724	1.30×10^{5}		-320	1402	-126		-269	149		-149		95.0	297
$\hat{\alpha}_{e w}^{(0)}$	-794	1.56×10^{5}		-317	1447	-105		-274	138		-138		97.0	227
	S_{11}	S_{12}	S_{13}	S_{14}	S_{15}		S_{16}	S_{17}		S_{18}		S_{19}	S_{20}	S_{21}
\hat{M}_{W}	1587	-1843	-100	-21.2	- 46.2		1.87	7-0.51		3.28		24.4	$4-25.6$	13.1
$\hat{\alpha}_{e w}^{\left(\hat{M}_{z}\right)}$	-297	320	-199	32.0	-16.0		1.80	-0.49		9.25		23.9	-25.0	43.6
$\hat{\alpha}_{e w}^{(0)}$	-227	317	-222	30.3	-20.7		1.95	-0.45		5 3.32		25.1	$1-26.3$	48.4
			S_{22}	S_{23}	S_{24}	S_{25}	S_{26}		S_{27}		S_{28}			
		\hat{M}_{W}	-13.7	0.51	-0.28	2		-3.49	-7	7.5		$3 \sqrt{2}$		
		$\hat{\alpha}_{e w}^{\left(\hat{M}_{Z}\right)}$	-45.7	0.51	-0.28	2		0	0)		$\sqrt{2}$		
		$\hat{\alpha}_{e w}^{(0)}$	-50.7	5.04	-1.22	2		0	0			$\sqrt{2}$		

Table 3. Numerical coefficients for SMEFT perturbations to $\Gamma(h \rightarrow \mathcal{A A})$ in three input parameter schemes, including two loop QCD interference effects.

Best practice example in SMEFT (3 schemes)

$$
\begin{aligned}
& \frac{\Gamma_{S M E F T}}{\hat{\Gamma}_{S M}} \simeq 1+S_{1}\left[f_{1}+\left(\tilde{C}_{H \square}^{(6)}-\frac{\tilde{C}_{H D}^{(6)}}{4}\right) f_{1}-f_{2}\right]+S_{2} f_{1}^{2}+S_{3}\left(\tilde{C}_{H W}^{(6)}-\tilde{C}_{H B}^{(6)}\right)^{2}+S_{4} \delta G_{F}^{(6)} \tilde{C}_{H B}^{(6)}, \\
&+S_{5} \delta G_{F}^{(6)} \tilde{C}_{H W}^{(6)}+S_{6} \delta G_{F}^{(6)} \tilde{C}_{H W B}^{(6)}+S_{7} \tilde{C}_{H D}^{(6)} \tilde{C}_{H B}^{(6)}+S_{8} \tilde{C}_{H D}^{(6)} \tilde{C}_{H W}^{(6)}+S_{9} \tilde{C}_{H D}^{(6)} \tilde{C}_{H W B}^{(6)}, \\
&+S_{10} \tilde{C}_{H W B}^{(6)} \tilde{C}_{H B}^{(6)}+S_{11} \tilde{C}_{H W B}^{(6)} \tilde{C}_{H W}^{(6)}+S_{12}\left(\tilde{C}_{H W B}^{(6)}\right)^{2}+S_{13} \tilde{C}_{H B}^{(6)}+S_{14} \tilde{C}_{H W}^{(6)}, \\
&+\left[S_{15}+S_{16} \log \left(\frac{\hat{m}_{h}^{2}}{\Lambda^{2}}\right)\right] \tilde{C}_{H W B}^{(6)}+\left[S_{17}+S_{18} \log \left(\frac{\hat{m}_{h}^{2}}{\Lambda^{2}}\right)\right] \tilde{C}_{W}^{(6)}, \\
&+\left[S_{19}+S_{20} \log \left(\frac{\hat{m}_{h}^{2}}{\Lambda^{2}}\right)\right] \operatorname{Re}_{u B}^{(6)}+\left[S_{21}+S_{22} \log \left(\frac{\hat{m}_{h}^{2}}{\Lambda^{2}}\right)\right] \operatorname{Re}_{u 3}^{(6)}+S_{23} \operatorname{Re}_{33}^{(6)} \tilde{\mathrm{C}}_{u H}^{(6)}, \\
&+S_{24} \operatorname{Re} \tilde{C}_{d H}^{(6)}+S_{25}\left(\tilde{C}_{H \square}^{(6)}-\frac{\tilde{C}_{H D}^{(6)}}{4}\right)+S_{26} \tilde{C}_{H D}^{(6)}+S_{27} \tilde{C}_{H W B}^{(6)}+S_{28} \sqrt{2} \delta G_{F}^{(6)} .
\end{aligned}
$$

- The various contributions

$$
\begin{aligned}
\left|\mathcal{A}_{S M}^{a, i j}+\mathcal{A}_{S M E F T}^{a, i j}\right|^{2} & =\left|\mathcal{A}_{S M}^{a, i j}+\frac{\mathcal{A}_{S M E F T, 6}^{a, i j}}{\Lambda^{2}}+\frac{\mathcal{A}_{S M E F T, 8}^{a, i j}}{\Lambda^{4}}+\cdots\right|^{2} \\
& =\left|\mathcal{A}_{S M}^{a, i j}\right|^{2}+\mathcal{A}_{S M}^{a, i} \frac{\mathcal{A}_{S M E F T, 6}^{a, i j}}{\Lambda^{2}}+\left|\frac{\mathcal{A}_{S M E F T, 6}^{a, i j}}{\Lambda^{2}}\right|^{2}+\mathcal{A}_{S M}^{a, i j} \frac{\mathcal{A}_{S M E F T, 8}^{a, i j}}{\Lambda^{4}}+\mathrm{h.c}+\cdots
\end{aligned}
$$

All was not perfect as yet....

$$
\sigma(\mathcal{G G} \rightarrow h)
$$

- The following challenges in $\underline{2107.07470}$:

1) SM results and literature are NOT in the BFM- but that seemed essential!?
2) 2 loop SM amplitudes were not presented in any transparent fashion
3) Two contributions:

$$
\begin{aligned}
\mathcal{O}\left(\alpha_{s}^{2} /(4 \pi)^{2}\right) & \longrightarrow\langle\mathcal{G G} \mid h\rangle_{S M}^{2} \times\langle\mathcal{G G} \mid h\rangle_{C_{H G}}^{0}: \longleftarrow \mathcal{O}\left(v^{2} / \Lambda^{2}\right) C_{H G} \\
\mathcal{O}\left(\alpha_{s} /(4 \pi)\right) & \longrightarrow\langle\mathcal{G G} \mid h\rangle_{S M}^{1} \times\langle\mathcal{G G} \mid h\rangle_{\tilde{C}_{H G}}^{1} \longleftarrow \mathcal{O}\left(\alpha_{s} /(4 \pi) v^{2} / \Lambda^{2}\right) C_{H G}
\end{aligned}
$$

Improving $\sigma(\mathcal{G G} \rightarrow h)$

- These contributions are the same in the $m_{t} \rightarrow \infty$ limit: 2305.05879 Martin, Trott

- After established by brute force!

Example of the utility of EFT, same composite operator form.

Renormalisation issue $\sigma(\mathcal{G G} \rightarrow h)$

- The two loop amplitude in the $m_{t} \rightarrow \infty$ analytically with expansion in ϵ explicit: C. Anastasiou, N. Deutschmann and A. Schweitzer, Quark mass effects in two-loop Higgs amplitudes, JHEP 07 (2020) 113 [2001.06295].

Gives analytically:
$\left.M_{\mathrm{NLO}}^{0}+\mathcal{O}\left(\left(\alpha_{s}^{0}\right)^{3}\right)\right)$

- LO result: $\Delta C_{h \mathcal{G G}}^{S M, m_{t} \rightarrow \infty}=-\frac{\alpha_{s}^{(r)}}{\bar{v}_{T}^{0} 16 \pi}\left(\frac{\hat{m}_{t}^{2}}{\hat{\mu}^{2}}\right)^{-\epsilon} M_{t, S M}^{(0), m_{t} \rightarrow \infty}$,

$$
=-\frac{\alpha_{s}^{(r)}}{\bar{v}_{T}^{0} 16 \pi}\left[-\frac{4}{3}\left(1+\frac{\pi^{2}}{12} \epsilon^{2}-\epsilon L_{\hat{m}_{t}}+\frac{1}{2} L_{\tilde{m}_{t}}^{2} \epsilon^{2}+\mathcal{O}\left(\epsilon^{3}\right)\right)\right], \quad \begin{array}{ll}
(\text { Log defn }) \\
L_{m}=\log \left(m^{2} / \hat{\mu}^{2}\right)
\end{array}
$$

- NLO result supplied as: $\quad M_{t, S M}^{(1)}=M_{U V}+M_{U V, m}+M_{I R}+M_{f i n}+M_{f i n, s} \log \left(-\frac{s}{\hat{\mu}^{2}}\right)$

NOT in the BFM, so QFT surgery required

Where is the 2 loop matching ?

- 2 loop matching part of answer: (after typo corrections)

$$
\left\langle\mathcal{G G | h \rangle _ { S M } ^ { 2 , F } \equiv i \delta _ { a b } \frac { K _ { a b } } { \overline { v } _ { T } ^ { 0 } } [(- \frac { s } { \hat { \mu } ^ { 2 } }) ^ { - \epsilon } \frac { \alpha _ { s } ^ { 0 } S ^ { \epsilon } \hat { \mu } ^ { - 2 \epsilon } } { 4 \pi }] ^ { 2 } (M _ { t , S M } ^ { (1) } - M _ { U V } - M _ { U V , m } - M _ { I R }) , ~ () ^ { 2 })}\right.
$$

Explicitly:

$$
\langle\mathcal{G G} \mid h\rangle_{S M}^{2, F}=\frac{\alpha_{s}^{(r)}}{4 \pi}\left[11+c_{1} \epsilon+\left(-\beta_{0}+c_{2} \epsilon\right) \log \left(-\frac{\hat{m}_{h}^{2}}{\hat{\mu}^{2}}\right)\right]\langle\mathcal{G G} \mid h\rangle_{S M, \epsilon \rightarrow 0}^{1},
$$

Where: $\quad c_{1}=\left[-\frac{\pi^{2} \beta_{0}}{12}+28 \log (z)+12 \zeta_{3}-\frac{40}{3}\right]$,
(Log defn)

$$
c_{2}=\left[-\frac{1}{2} \beta_{0} \log \left(\frac{-s}{\mu^{2}}\right)-2 \beta_{0} \log (z)+8\right] . \quad \log (z)=\log \left(-s / m_{t}^{2}\right) / 2
$$

Renormalisation soln $\sigma(\mathcal{G G} \rightarrow h)$

- SM lit, and past SMEFT results (including $\underline{2107.07470}$) followed a mixed scheme

$$
Z_{g}^{2} Z_{\hat{\mathcal{G}}}\left(-\frac{s}{\hat{\mu}^{2}}\right)^{-\epsilon} i \delta_{a b} K_{a b} \frac{1}{\bar{v}_{T}^{(r)}} \frac{\alpha_{s}^{(r)}}{4 \pi} M_{t, S M}^{(0)}=-\left[\frac{\alpha_{s}^{(r)}}{4 \pi}\right]^{2} \frac{\beta_{0}}{\epsilon}\left(-\frac{s}{\hat{\mu}^{2}}\right)^{-\epsilon} i \delta_{a b} K_{a b} \frac{1}{\overline{v_{T}^{(r)}}} M_{t, S M}^{(0)} .
$$

Renormalise as: $\quad Z_{\alpha_{s}}=1-\frac{\alpha_{s}}{4 \pi} \frac{1}{\varepsilon}\left(\beta_{0}-\frac{2}{3}\left(\frac{\mu^{2}}{m_{t}^{2}}\right)^{\varepsilon}\right)$

$$
Z_{g}=1+\frac{\alpha_{s}}{4 \pi} \frac{2}{3 \varepsilon}\left(\frac{\mu^{2}}{m_{t}^{2}}\right)^{\varepsilon} .
$$

But in the BFM: $\quad \mu^{2 \epsilon} Z_{g}^{2} Z_{\hat{\mathcal{G}}} \equiv 1$, how do we modify to the BFM?
Treat the EFT, as an EFT: Just renormalise the composite operator.

$$
\langle\mathcal{G G} \mid h\rangle_{\mathcal{O}\left(v^{2} / \Lambda^{2}\right)}^{0} \rightarrow Z_{H G} \frac{\tilde{C}_{H G}^{(6)}}{\bar{v}_{T}}\left\langle\mathcal{G}^{\mu \nu} \mathcal{G}_{\mu \nu} h\right\rangle_{0} . \quad Z_{H G}=1-\frac{\beta_{0} \alpha_{s}}{4 \pi \epsilon}+\cdots
$$

IR problems $\sigma(\mathcal{G} \mathcal{G} \rightarrow h)$

- Such renormalisation (re) introduces a $\beta_{0} \operatorname{IR}$ pole:

$$
L_{+}=L_{\hat{m}_{h}}+L_{\hat{m}_{t}}
$$

$$
\frac{\Delta^{2} \delta \sigma(\mathcal{G \mathcal { G }} \rightarrow h)}{\Delta^{2} \hat{\sigma}_{L O, \epsilon \rightarrow 0}^{S M}(\mathcal{G \mathcal { G }} \rightarrow h ; z)}=6\left[-\frac{6}{\epsilon^{2}}-\frac{\beta_{0}}{\epsilon}+6 \frac{L_{+}}{\epsilon}-\frac{6}{\epsilon}+\beta_{0} L_{\hat{m}_{t}}+3 \pi^{2}+5-\beta_{0}-3 L_{+}^{2}+6 L_{+}\right] \tilde{C}_{H G}^{(6)},
$$

This is why it seemed a mixed scheme was/is required to many in the lit.

This IR behavior is consistent with the Catani-Seymour subtraction:
S. Catani and M. H. Seymour, A General algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 (hep-ph/9605323].

Canceled by considering IR limit of $\sigma(\mathcal{G G} \rightarrow \mathcal{G} h)$

IR problems $\sigma(\mathcal{G G} \rightarrow h)$

- Appropriate re-interpretation of:
S. Dawson, Radiative corrections to Higgs boson production, Nucl. Phys. B359 (1991) 283.

Higgs boson production at the LHC
M. Spira (Hamburg U.), A. Djouadi (Montreal U. and DESY), D. Graudenz (CERN), P.M. Zerwas (DESY) (Feb, 1995) Published in: Nucl.Phys.B 453 (1995) 17-82 • e-Print: hep-ph/9504378 [hep-ph]

$$
\Delta \delta|\mathcal{A}(\mathcal{G G} \rightarrow h \mathcal{G})|^{2}=\frac{768 \pi \alpha_{s}^{(0)}}{\bar{v}_{T}^{0}} 2 \operatorname{Re}\left(\frac{\Delta C_{h \mathcal{G G}}^{S M}}{\mu^{2 \epsilon}} \tilde{C}_{H G}\right) \frac{\left(\hat{m}_{h}^{8}+s^{4}+t^{4}+u^{4}\right)(1-2 \epsilon)+\frac{1}{2} \epsilon\left(\hat{m}_{h}^{4}+s^{2}+t^{2}+u^{2}\right)^{2}}{\text { stu }},
$$

- Results in ratio: (IR cancels poles in both inf. terms)

$$
\begin{aligned}
& 6\left[\frac{6}{\epsilon^{2}}-6 \frac{L_{+}}{\epsilon}+\frac{6}{\epsilon}+3 L_{+}^{2}-6 L_{+}-\pi^{2}+6\right] \delta(1-z) \tilde{C}_{H G} \\
& +6\left[\left(12 f_{1}(z)\left(L_{\hat{m}_{h}}-\log (z)\right)-11 f_{1}(z)+11 z\right) f_{1}(z)+11(1-z)^{2} z\right]\left(\frac{1}{1-z}\right)_{+} \tilde{C}_{H G} \\
& +144 f_{1}^{2}(z)\left(\frac{\log (1-z)}{1-z}\right)_{+} \tilde{C}_{H G}-72 f_{1}^{2}(z)\left[\frac{1}{\epsilon}+1-L_{\hat{m}_{t}}\right]\left(\frac{1}{1-z}\right)_{+}^{\tilde{C}_{H G}}
\end{aligned}
$$

SMEFT splitting functions

- To cancel all poles two steps, regulate end-point singularities:
(on-shellness equiv?) add $\sigma(\mathcal{G G} \rightarrow \mathcal{G} h), \sigma(\mathcal{G G} \rightarrow h)$ AND

$$
(1-z)^{-1-2 \epsilon}=\left(\frac{1}{1-z}\right)_{+}-2 \epsilon\left(\frac{\log (1-z)}{1-z}\right)_{+}-\frac{1}{2 \epsilon} \delta(1-z)
$$

introduce counter-term for AP splitting fund: (this means SMEFT pdf's)

$$
\Delta^{2} \delta \sigma_{D R c . t}^{A P} \equiv 36 \Delta^{2} \hat{\sigma}_{L O, \epsilon \rightarrow 0}^{S M E F T}(\mathcal{G} \mathcal{G} \rightarrow h)\left[\left(\frac{\mu^{2}}{\mu_{F}^{2}}\right)^{\epsilon}\right](4 \pi)^{\epsilon} \frac{\Gamma(1+\epsilon) \Gamma(1-\epsilon)^{2}}{\Gamma(1-2 \epsilon)}\left[\frac{1}{\epsilon}\right] z p_{\mathcal{G G}}(z) \tilde{C}_{H G}
$$

Where:

$$
p_{\mathcal{G G}}(z)=2 z\left(\left(\frac{1}{1-z}\right)_{+}-z+\frac{f_{1}(z)}{z^{2}}\right)+\frac{\beta_{0}}{6} \delta(1-z) .
$$

- Need to upgrade the α_{s} input, certainly if extracted from PDF's

NLO Compact Final Answer

$$
\begin{aligned}
\frac{\Delta^{2} \delta \sigma^{S M E F T}}{\Delta^{2} \hat{\sigma}_{L O, \epsilon \rightarrow 0}^{S M}} \frac{1}{2 \tilde{C}_{H G}^{(6)}} & =12\left[\pi^{2}+\frac{11}{2}\right] \delta(1-z)-66(1-z)^{3}+144 f_{1}^{2}(z)\left(\frac{\log (1-z)}{1-z}\right)_{+} \\
& +72 f_{1}^{2}(z)\left[L_{+}-\log (z)-1\right]\left(\frac{1}{1-z}\right)_{+}+36 z p_{\mathcal{G G}}(z) \log \left(\frac{\hat{\mu}^{2}}{\mu_{F}^{2}}\right)
\end{aligned}
$$

Notation:

$$
\begin{aligned}
& L_{m}=\log \left(m^{2} / \hat{\mu}^{2}\right) \\
& L_{+}=L_{\hat{m}_{h}}+L_{\hat{m}_{t}} \\
& z=\hat{m}_{h}^{2} / s \\
& f_{1}(z)=z^{2}-z+1
\end{aligned}
$$

$$
\begin{gathered}
p_{\mathcal{G}}(z)=2 z\left(\left(\frac{1}{1-z}\right)_{+}-z+\frac{f_{1}(z)}{z^{2}}\right)+\frac{\beta_{0}}{6} \delta(1-z) . \\
\int_{0}^{1} d x \frac{f(x)}{(x)+}=\int_{0}^{1} d x \frac{f(x)-f(0),}{x}, \\
\int_{0}^{1} d f(x)\left(\frac{\log (x)}{x}\right)_{+}=\int_{0}^{1} d x \frac{(f(x)-f(0)) \log (x)}{x} .
\end{gathered}
$$

SMEFT $\sigma(\mathcal{G G} \rightarrow h)$ perturbation

- Numerically the result is:

$$
\begin{aligned}
& \frac{\sigma_{\text {SMEFT }}^{\hat{\tilde{s}}}(\mathcal{G G} \rightarrow h)}{\hat{\sigma}_{\mathrm{SM}, m_{t} \rightarrow \infty}(\mathcal{G G} \rightarrow h)} \simeq 1+289 \tilde{C}_{H G}^{(6)} \\
& +289 \tilde{C}_{H G}^{(6)}\left(\tilde{C}_{H \square}^{(6)}-\frac{1}{4} \tilde{C}_{H D}^{(6)}\right)+4.68 \times 10^{4}\left(\tilde{C}_{H G}^{(6)}\right)^{2}+289 \tilde{C}_{H G}^{(8)} \\
& +0.85\left(\tilde{C}_{H \square}^{(6)}-\frac{1}{4} \tilde{C}_{H D}^{(6)}\right)+369 \tilde{C}_{H G}^{(6)}-0.91 \tilde{C}_{u H}^{(6)}-7.26 \operatorname{Re} \tilde{C}_{u G}^{(6)} \\
& -0.60 \delta G_{F}^{(6)}-4.42 \operatorname{Re} \tilde{C}_{u G}^{(6)} \log \left(\frac{\hat{m}_{h}^{2}}{\Lambda^{2}}\right)-0.126 \operatorname{Re} \tilde{C}_{d G}^{(6)} \log \left(\frac{\hat{m}_{h}^{2}}{\Lambda^{2}}\right) \\
& -0.057 \operatorname{Re} \tilde{C}_{d G}^{(6)}+2.06 \tilde{C}_{d H}^{(6)} \text {. }
\end{aligned}
$$

2305.05879 Martin, Trott

- Operator Definitions:

$$
\begin{aligned}
\mathcal{L}_{S M E F T} & \supset \frac{C_{H G}^{(6)}}{\Lambda^{2}} H^{\dagger} H G_{A}^{\mu \nu} G_{\mu \nu}^{A}+\frac{C_{H G}^{(8)}}{\Lambda^{4}}\left(H^{\dagger} H\right)^{2} G_{A}^{\mu \nu} G_{\mu \nu}^{A}+\frac{C_{H \square}^{(6)}}{\Lambda^{2}}\left(H^{\dagger} H\right) \square\left(H^{\dagger} H\right)+\frac{C_{H D}^{(6)}}{\Lambda^{2}}\left(H^{\dagger} D_{\mu} H\right)^{*}\left(H^{\dagger} D_{\mu} H\right) \\
& +\frac{C_{u H}^{(6)}}{\Lambda^{2}}\left(H^{\dagger} H\right)\left(\bar{q}_{p} u_{r} \widetilde{H}\right)+\frac{C_{d H}^{(6)}}{\Lambda^{2}}\left(H^{\dagger} H\right)\left(\bar{q}_{p} d_{r} H\right)+\frac{C_{u G}^{(6)}}{\Lambda^{2}}\left(\bar{q}_{p} \sigma^{\mu \nu} T^{A} u_{r}\right) \widetilde{H} G_{\mu \nu}^{A}+\frac{C_{d G}^{(6)}}{\Lambda^{2}}\left(\bar{q}_{p} \sigma^{\mu \nu} T^{A} d_{r}\right) H G_{\mu \nu}^{A}
\end{aligned}
$$

SMEFT $\sigma(\mathcal{G G} \rightarrow h)$ perturbation

- Numerically the result is:

$$
\begin{aligned}
\frac{\sigma_{S M E F T}^{\hat{\alpha}}}{\hat{\sigma}_{\text {SM }, m_{t} \rightarrow \infty}(\mathcal{G G} \rightarrow h)}(\mathcal{G G} \rightarrow h) & \\
& +289 \tilde{C}_{H G}^{(6)} \\
& +289 \tilde{C}_{H G}^{(6)}\left(\tilde{C}_{H \square}^{(6)}-\frac{1}{4} \tilde{C}_{H D}^{(6)}\right)+4.68 \times 10^{4}\left(\tilde{C}_{H G}^{(6)}\right)^{2}+289 \tilde{C}_{H G}^{(8)} \\
& \begin{array}{l}
+0.85\left(\tilde{C}_{H \square}^{(6)}-\frac{1}{4} \tilde{C}_{H D}^{(6)}\right)+369 \tilde{C}_{H G}^{(6)}-0.91 \tilde{C}_{u H}^{(6)}-7.26 \operatorname{Re} \tilde{C}_{u G}^{(6)} \\
-0.60 \delta G_{F}^{(6)}-4.42 \operatorname{Re} \tilde{C}_{u G}^{(6)} \log \left(\frac{\hat{m}_{h}^{2}}{\Lambda^{2}}\right)-0.126 \operatorname{Re} \tilde{C}_{d G}^{(6)} \log \left(\frac{\hat{m}_{h}^{2}}{\Lambda^{2}}\right) \\
-0.057 \operatorname{Re} \tilde{C}_{d G}^{(6)}+2.06 \tilde{C}_{A H}^{(6)} .
\end{array}
\end{aligned}
$$

2305.05879 Martin, Trott

- The various contributions

$$
\begin{aligned}
\left|\mathcal{A}_{S M}^{a, i j}+\mathcal{A}_{S M E F T}^{a, i j}\right|^{2} & =\left|\mathcal{A}_{S M}^{a, i j}+\frac{\mathcal{A}_{S M E F T, 6}^{a, i j}}{\Lambda^{2}}+\frac{\mathcal{A}_{S M E F T, 8}^{a, i j}}{\Lambda^{4}}+\cdots\right|^{2} \\
& =\left|\mathcal{A}_{S M}^{a, i j}\right|^{2}+\mathcal{A}_{S M}^{a, i j} \frac{\mathcal{A}_{S M E F T, 6}^{a, i j}}{\Lambda^{2}}+\left|\frac{\mathcal{A}_{S M E F T, 6}^{a, i j}}{\Lambda^{2}}\right|^{2}+\mathcal{A}_{S M}^{a, i j} \frac{\mathcal{A}_{S M E F T, 8}^{a, i j}}{\Lambda^{4}}+\mathrm{h} . \mathrm{c}+\cdot
\end{aligned}
$$

