Title: Grad Student Seminar with Nils Siemonsen

Speakers: Nils Peter Siemonsen Date: May 01, 2023 - 2:30 PM

URL: https://pirsa.org/23050083

Abstract: Nils Siemonsen, Perimeter Institute & amp; University of Waterloo

Dark Photon Superradiance

Gravitational and electromagnetic signatures of black hole superradiance are a unique probe of ultralight particles that are weakly-coupled to ordinary matter. Considering the lowest-order interactions one can write down for spin-1 dark photons, the kinetic mixing, a dark photon superradiance cloud sources a rotating visible electromagnetic field. A pair production cascade ensues in the superradiance cloud, resulting a turbulent plasma with strong electromagnetic emissions. The emission is expected to have a significant X-ray component and to potentially be periodic, with period set by the dark photon mass. The luminosity is comparable to the brightest X-ray sources in the Universe, allowing for searches at distances of up to hundreds of Mpc with existing telescopes. Therefore, multi-messenger search campaigns are sensitive to large parts of unexplored beyond the Standard Model parameter space.

Grad Student Seminar, Perimeter Institute Dark Photon Superradiance

Nils Siemonsen Perimeter Institute for Theoretical Physics

Arthur B. McDonald Canadian Astroparticle Physics Research Institute

PERIMETER D INSTITUTE FOR THEORETICAL PHYSICS

May 1, 2023

Q: Can we detect beyond the Standard Model physics using astrophysical probes?

Why?

- Strong CP-problem, dark matter
- Low-energy limit of quantum gravity models

Candidates:

- Axion (spin-0)
- Dark photon (spin-1)

Couplings:

- Axion-photon
- Kinetic mixing

2/8 Nils Siemonsen

Black hole Superradiance

- $\mathcal{L} = -\frac{1}{4}F'_{\mu\nu}F'^{\mu\nu} \frac{\mu^2}{2}A'_{\mu}A'^{\mu}$
- Penrose, Zeldovich, ... \Rightarrow Energy extraction from black hole
- Massive fields [Detweiler, 1980] $\Rightarrow A'_{\mu} \sim e^{t/\tau_{\rm SR}}$
- Timescales [Baryakhtar et al, 2017]: $au_{
 m SR} \sim 1 \min(\frac{M_{
 m BH}}{10M_{\odot}})$
- Instability most efficient if $\mu \sim 10^{-12} \text{eV}(\frac{10M_{\odot}}{M_{\text{BH}}})$
- Quantum fluctuations seed instability
- Cloud mass [East, 2018]: $M_c \lesssim 10\%~M_{
 m BH}$

Black hole Superradiance

Superradiance Instability Phase

- Gravitational wave timescales [NS & East, 2019]: $\tau_{\rm GW} \sim 33 \text{ days} \left(\frac{M_{\rm BH}}{10M_{\odot}}\right)$
- Cloud frequency: $\mu \sim 320 \text{ Hz} \left(\frac{10M_{\odot}}{M_{\text{BH}}}\right)$
- \Rightarrow Black hole spindown & gravitational wave emission
- Superradiance as "axion detector" [Arvanitaki, Dimopoulos, Dubovsky, Kaloper, March-Russell,...]

4/8 Nils Siemonsen

Dark Photon Superradiance NS, Mondino, Egana-Ugrinovic, Huang, Baryakhtar, East

- $\mathcal{L} = -\frac{1}{4}F'_{\mu\nu}F'^{\mu\nu} \frac{\mu^2}{2}A'_{\mu}A'^{\mu} \frac{1}{4}F_{\mu\nu}F^{\mu\nu} + I_{\mu}(A^{\mu} + \varepsilon A'^{\mu})$
- Large electric fields $A'_{\mu} \to \varepsilon \mathbf{E}' \Rightarrow \gamma_e \sim 10^{12}$
- Synchrotron emission $\Rightarrow e^{\pm}$ -creation
- \Rightarrow Pair production cascade with rate $\Gamma_{e^{\pm}}$

5/8 Nils Siemonsen

Dark Photon Superradiance

Simulations:

- Maxwell equations + Dark Photon sources
- 3D evolution on Kerr background
- Plasma modeling: "Resistive force-free" methods

Endstate of pair cascade:

- Turbulent plasma state
- Largely magnetically dominated: $|\mathbf{B}| > |\mathbf{E}|$
- Efficient magnetic reconnection in bulk of cloud
- Strong dissipation: $P_{\rm diss} \gg P_{\rm EM}$
- Luminosity: $L \lesssim 10^{43} \text{ erg/s}$
- Some evidence for periodicity
- $|\mathbf{B}| \lesssim 10^8$ Gauss \Rightarrow X-ray & γ -ray
- \Rightarrow Electromagnetic signatures

Dark Photon Superradiance

6/8 Nils Siemonsen

Observational prospects

Electromagnetic signatures: [NS et al., 2022]

- Follow up LVK binary black holes
- CHIME (radio), Swift/Fermi (X, γ -ray)

Gravitational waves:

- Various methods (SGWB, all-sky, directed)
- Follow-up searches [Jones et al., 2023]:

7/8 Nils Siemonsen

Dark Photon Superradiance

Conclusion

- 1. Dark photon superradiance results in electromagnetic/gravitational signatures
- 2. Current & future observation campaigns are sensitive to these signatures
- **3.** Synergy potential for particle physics, relativity & astrophysics

Outlook:

- Candidate events in the LVK O4 to follow up (in EM & GW)
- Other relevant signatures around supermassive black holes

Nils Siemonsen