Title: Lieb-Schultz-Mattis, &™1t Hooft and L uttinger: anomaliesin lattice systems
Speakers: Meng Cheng

Series. Quantum Matter

Date: May 23, 2023 - 3:30 PM

URL.: https://pirsa.org/23050025

Abstract: Macroscopic physics of a quantum many-body systems on alattice is commonly captured by a continuum field theory. We will discuss the
interplay between lattice effects and continuum theory from the perspective of symmetry and 't Hooft anomalies. In the first part of the talk, using
the example of a spin-1/2 XXZ chain, we will show how the continuum limit of alattice model is properly described in terms of afield theory with
topological defects. In particular, anomaly explains a curious size dependence of the ground state momentum in the XXZ chain. In the second part,
we will examine U(2) filling anomaly for subsystem symmetries. With a generalized flux-insertion argument, we derive nontrivial constraints on the
mobility of excitations in a symmetry-preserving gapped phase.

Zoom link: https://pitp.zoom.us/j/961174473962pwd=QV NaSHdHeDh1RENvenRjamVIV GNudz09
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The problem of emergence in condensed matter

1

Lattice models with local interactions

Assumption: lattice systems have a nice continuum QFT description of the low-energy physics
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The problem of emergence in condensed matter

1

Lattice models with local interactions

Assumption: lattice systems have a nice continuum QFT description of the low-energy physics

e = o
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What is a 't Hooft anomaly?
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What is a 't Hooft anomaly?

A system with a global symmetry can be coupled to a background gauge field

Anomaly refers to nontrivial “Berry phase” in the space of states of defects

They are independent of energy scale and can not be reproduced by
any symmetry-preserving SRE state
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What is a 't Hooft anomaly?

A system with a global symmetry can be coupled to a background gauge field

Anomaly refers to nontrivial “Berry phase” in the space of states of defects

They are independent of energy scale and can not be reproduced by
any symmetry-preserving SRE state

No-go (“LSM”) theorem: a system with ’t Hooft anomaly can not have a trivial low-energy theory

Anomaly matching: Low-energy theory must reproduce the anomalous response
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Symmetry defects

A defect is a localized change of the Hamiltonian
Topological = defects can be moved with a unitary

Does not affect local physics

Construct a defect from a global symmetry Ug foree G

@ Truncate Uq to a finite interval

..........................................

U,

trun

D et

runf Uirun ONly differs from H at the end — a defect

Results do not depend on the details of the Hamiltonian.
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Probing anomaly using symmetry defects

For internal symmetries,’t Hooft anomaly can be extracted by a “local” computation,
complete for bosonic systems in 1+1d (see Else and Nayak; Kawagoe and Levin).

However, it is not clear how to apply them to spatial symmetries.
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The continuum limit

It is convenient to consider a finite-volume system, and then take L. — o0

Sometimes the limit is smooth in system size

FM Ising model > real scalar ¢* theory
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The continuum limit

It is convenient to consider a finite-volume system, and then take L. — o0

Sometimes the limit is smooth in system size

FM Ising model > real scalar qb4 theory

Sometimes the limit is not smooth in system size

Many examples in spin-1/2 systems with anti-ferromagnetic interactions
There is a well-defined QFT in continuum, but . — o0 is not smooth
Different limits correspond to QFT with topological defects inserted

Non-smooth limits are often related to anomaly of emanant symmetry
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Non-smooth continuum limit: spin-1/2 Heisenberg chain

L
=1
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Non-smooth continuum limit: spin-1/2 Heisenberg chain

L
j=1

Obvious: even and odd L have different low-energy spectra (singlet vs doublet)

However, for even L there are still two limits
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Non-smooth continuum limit: spin-1/2 Heisenberg chain

L
=1

Obvious: even and odd L have different low-energy spectra (singlet vs doublet)

However, for even L there are still two limits

Eigenstates labeled by lattice momentum 7" = AL

L G.S. K
L =4k 0
L=4k+2 T
Odd L +7/2 4+ OL™")
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Emergent vs Emanant symmetry

SU(2), CFT
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Emergent vs Emanant symmetry

H= Z SJ' ' SJ'+1 + o UV symmetry = SO(3) X translations
=1 l
SU(2), CFT Emergent symmetry in the IR:

SO4) = [SU2), x SUQ)RI/Z,

Usually emergent symmetries, e.g. SU(2),, are broken by irrelevant operators

Except the diagonal SO(3) C SO(4), because it comes from the exact SO(3) in UV

Pirsa: 23050025
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Emergent vs Emanant symmetry

I
H= Z Sj : SJ'+1 iy I UV symmetry = SO(3) X translations
j=1 l
SU(2), CFT Emergent symmetry in the IR:

SO4) = [SUQ2), x SUQ)RI/Z,

Usually emergent symmetries, e.g. SU(2),, are broken by irrelevant operators

Except the diagonal SO(3) C SO(4), because it comes from the exact SO(3) in UV
However, the central element C C SO(4) is also exact in the IR theory (not broken by irrelevant ops)

Because C comes from the UV lattice translation!
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Emergent vs Emanant symmetry

I
H= Z Sj i SJ'+1 o 2 UV symmetry = SO(3) X translations
j=1 l
SU(2), CFT Emergent symmetry in the IR:

SO4) = [SUQ2), x SUQ)RI/Z,

Usually emergent symmetries, e.g. SU(2),, are broken by irrelevant operators

Except the diagonal SO(3) C SO(4), because it comes from the exact SO(3) in UV
However, the central element C C SO(4) is also exact in the IR theory (not broken by irrelevant ops)

Because C comes from the UV lattice translation!

C is an example of an emanant symmetry
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Finite-size spectra of spin-1/2 AFM Heisenberg chain

Eigenstates labeled by lattice momentum K (so 7 = ¢’
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Non-smooth continuum limit: fracton
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Chamon’s model
Also Bravyi et al

IX — XI 17 ZI
i - S
XI I Z1—— 22
XX oot IX It 12
IX ——XI 17 ZI
Haah's code
1outof 18
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Non-smooth continuum limit: fracton
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Chamon’s model
Also Bravyi et al
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1outof18

Topological ground state degeneracy on L’ torus depends on L
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Finite-size spectra of spin-1/2 AFM Heisenberg chain

L
H= ZSj‘Sj+1+“'

j=1
L G.S.K
L =4k
L=4k+2 T
Odd L +7/2 + O(L™")
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Finite-size spectra of spin-1/2 AFM Heisenberg chain

L
H= ZSj‘Sj+1+“'

j=1
L G.S.K
L=4k
L=4k+?2 T
Odd L +7/2 + O(L™")

Explain the universal aspects of the finite-L low-energy spectra using the continuum theory?
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Defects in spin chains

G

.t IS the group of internal symmetry

......

Time ¥ /
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Defects in spin chains

G

.t IS the group of internal symmetry

(Spatial) defect labeled by g € G,

Symmetry of the system with a g-defect is modified:
AT Z(g) = {h € G| hg = gh
,/J\H\ hEZ(g) (&) ={ | hg = gh}
Time k/
g € Gint
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Defects in spin chains

G

.t IS the group of internal symmetry

(Spatial) defect labeled by g € G,

Symmetry of the system with a g-defect is modified:
Y R Z(g) = {h € G| hg = gh
,/JAH\ hEZ(g) (&) ={ | hg = gh}
Time k/
g € Gint
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SO(3) defects in spin-1/2 Heisenberg chain

Symmetry: G,,, = SO(3), G,,, = Z, = {T|T" =1}

Up to conjugacy g = e’ 6 ~c+ 21~ —0

SO3) 6=0
Remaining symmetry G, (6) = { O(2) o=n=x
U{l) oc#0=
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-y 1 : :
'S defect at link (J,J + 1) : H[o] = Z S;- 84+ E(e‘”'SJ;*SJ‘+l + e"’S;S}‘H) + S285%

SO(3) defects in spin-1/2 Heisenberg chain

Symmetry: G, = SO(3),G,, = Z, = {T|T" =1}

e T

Up to conjugacy g = e’ 6 ~c+ 21~ —0

SO3) 6=0

Remaining symmetry G, (6) = { O(2) o=n=x
U{l) oc#0=

JEI+1
J#

The original translation operator does not commute with H[o]

Need to modify it to 7(6) = ¢’*Si1T
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LSM anomaly in spin-1/2 chain

/_\ Defect partition function: Z(, L, o, n, &) = Tr[e P T(5)"e*5]

x/ (o, &) the most general background SO(3) gauge field on a spacetime torus
* Additional possibility when o or £ equal to 7, next slide
i - - -

- T(0) e

Oshikawa 2000
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LSM anomaly in spin-1/2 chain

/‘—\ Defect partition function: Z(, L, o, n, &) = Tr[e P T(5)"e 5]

&/ (o, £) the most general background SO(3) gauge field on a spacetime torus
* Additional possibility when o or £ equal to 7, next slide
o - - -

(e T(o)"es>

Oshikawa 2000
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LSM anomaly in spin-1/2 chain

/_\ Defect partition function: Z(, L, o, n, &) = Tr[e P T(5)"e*5]

&/ (o, &) the most general background SO(3) gauge field on a spacetime torus
* Additional possibility when o or £ equal to 7, next slide
’ d A g b . Z n- - i
ey T( O.)n elfS T(0)" is a temporal gauge field of translation
x// Z(p,L,o,n+ L, &) = Z(B,L,o,n, & + o) follows from T(0)* = e
 icS? Z(p,L,—o,n,—&) =Z(p,L,o,n, &) follows from e symmetry
e
Z(B,L,c +2n,n,&) = (—=1)"Z(B, L, 6, n, &) follows from T(c) = e’ T
Oshikawa 2000

Z(p,L,o,n, &+ 27) = (—1DEZ(B, L, 6, n, &) follows from e>™5" = (—1)F
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LSM anomaly in spin-1/2 chain

/_\ Defect partition function: Z(, L, o, n, &) = Tr[e P T(5)"e*5]

&/ (o, &) the most general background SO(3) gauge field on a spacetime torus

* Additional possibility when o or £ equal to 7, next slide

’ & A g b . Z n- . 2

s T( O.)n elfS T(0)" is a temporal gauge field of translation
x// Z(p,L,o,n+ L, &) = Z(B,L,o,n, & + o) follows from T(0)* = e

O Z(B, L, —o,n, =) = Z(B, L, 0, n, &) follows from €™ symmetry
e
Z(B,L,6+ 2m,n, &) = (—1)"Z(B, L, 6, n, &) follows from T(6) = €T
Oshikawa 2000

Z(p,L,0,n, &+ 27) = (—1DEZ(B, L, 6, n, &) follows from e>™5" = (—1)F

These phases can be changed by redefining operators, but can not be all eliminated
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The continuum theory of the XXZ chain

L
H=) (S5 + 8781 T A5550)
j=1

Global symmetry: spin O(2) and lattice translation Z;
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The continuum theory of the XXZ chain

L
H= ) (SS + S5, + A58
=l

Global symmetry: spin O(2) and lattice translation Z;

When 0 < 4, < 1, the model flows to a ¢ = 1 Luttinger liquid

= ldx %[K‘l(aﬁﬁ + K(0.$)2] — A cos 20
T
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The continuum theory of the XXZ chain
H= Z (7S5, +8)S7 | + 1,832 )
Global symmetry: spin O(2) and lattice translation Z;

When 0 < 4, < 1, the model flows to a ¢ = 1 Luttinger liquid

H= ]dx %[K‘l(aﬁf + K(0.)2] — Acos 20
T

SZ — Q?ﬂ
T C_l &mP C = elﬂ(Qm_'_Qw)

C:p->¢p+n,0->0+n
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The continuum theory of the XXZ chain

A chain of length L. ~ the continuum theory with L. number of C defects
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The continuum theory of the XXZ chain

A chain of length L. ~ the continuum theory with L. number of C defects

L even: leads to free boson CFT without any defects

L. odd: leads to free boson CFT with a C defect
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The continuum theory of the XXZ chain

A chain of length L. ~ the continuum theory with L. number of C defects

L even: leads to free boson CFT without any defects

L. odd: leads to free boson CFT with a C defect

C defect has a projective rep of O(2), reflecting a mixed anomaly between C and O(2)

~ the continuum limit of the LSM anomaly

(Cheng et al; Thorngren and Metlitski; Jian, Bi and Xu; Ji and Wen; ...)
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The continuum theory of the XXZ chain

A chain of length L. ~ the continuum theory with L. number of C defects

L even: leads to free boson CFT without any defects

L. odd: leads to free boson CFT with a C defect

C defect has a projective rep of O(2), reflecting a mixed anomaly between C and O(2)

~ the continuum limit of the LSM anomaly

(Cheng et al; Thorngren and Metlitski; Jian, Bi and Xu; Ji and Wen; ...)

Because C” = 1, L and L + 2 have identical low-energy spectrum (up to rescaling)

So naively, the continuum limit depends on L. mod 2
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't Hooft anomaly of Zg

Z,,(a) = exp (inJ (wP®Pua+auau a))
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't Hooft anomaly of Zg

Z,.(a) = exp (inJ (w,?(z) Ua+auUau a))

For Z, symmetry, 1+1 anomaly from crossing relation: \ /
Chang et al 2018; Lin and Shao 2019 F_J
> < \_/ L e =-
L
(G
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c ¢

Lattice interpretation: the lattice momentum 7(L + 2) = — T(L)

Therefore the continuum limit depends on . mod 4
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Lattice momentum of the ground state

(Q,0) T
Even L (0,0) I
+ 1 O .L in
— 2 ’ —1-eil
Odd L [
(0= * 5) iLe=1r

Works even for L = 2,3 !
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The continuum theory of the XXZ chain

L
H= D (SiS + 87871 T A57551)
j=1

Global symmetry: spin O(2) and lattice translation Z;

When 0 < 4, < 1, the model flows to a ¢ = 1 Luttinger liquid

Hi= ldx %[K‘l(aﬁﬁ + K(0.6)2] — Acos 20
T
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Filling anomaly

Translation-invariant lattice models with U(1) symmetry

Total charge QO = Z i (=
X

Thermodynamic limit with a fixed filling factor v = F
s

Assume that v is a rational number v = E
q
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Filling anomaly

Translation-invariant lattice models with U(1) symmetry

Total charge O = Z (bl (= L
X

Thermodynamic limit with a fixed filling factor v = F
s

Assume that v is a rational number v = E
q

U(1) Lieb-Schultz-Mattis-Oshikawa-Hastings: when v &€ Z, there is no symmetric SRE state
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Filling anomaly

Translation-invariant lattice models with U(1) symmetry
Bl T

Total charge Q = Z n,n €27
X

Thermodynamic limit with a fixed filling factor v = F
§

Assume that v is a rational number v = E
q

U(1) Lieb-Schultz-Mattis-Oshikawa-Hastings: when v &€ Z, there is no symmetric SRE state

What kinds of LRE states are allowed?
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U(1) defect operator

A
QAB - E ny

X <x<xp

For a gapped GS |y): Oqg|w) = (Kg — K,) |@)

K, g are (quasi-)localized at A/B
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U(1) defect operator

A
QAB= Z ny

Xy <x<xp

For a gapped GS |y): Qx5 y) = (Kg — Ky |y)

K, g are (quasi-)localized at A/B

2710t | yr) = ¢27Ksg=27K, | )

| w) has a uniform charge density v: (| e>"Kse=27Ka | ) = 271524l

If v € Z, translation symmetry breaking in the ground state
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LSM from U(1) defect operator

eiHQM | w) == UaM(é') | y/)
(Upyy(2)) = 27Ny
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LSM from U(1) defect operator
e ®u|y) = Usy(0) |y)
(UBM(ZJT» = eszM

Pirsa: 23050025



Subsystem symmetry

; ; Z> symmetry on each plane
/ Charged particle are planons

iean
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Subsystem symmetry

Z> symmetry on each plane

Charged particle are planons

e/

Z> symmetries on two sets of planes

Charged particle are lineons
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Fractons from gauging subsystem symmetry

/ Gauging subsystem symmetries

Stack of 7, toric codes

NN

y Z o Ty
A 7 W ﬁ' X ‘( i Z z
4 X g zZ Z

L e ot
i » |L A X £ ! #
/ v zZ VA

e Ven X-cube model with fractons

Al 4
Vijay, Haah and Fu, PRB 2016
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Subsystem U(1) LSM theorem

Translation-invariant lattice models with U(1) symmetry

Total charge Q = Z n.n €Z
r

Thermodynamic limit with a fixed filling factor v = g = e
Ny g
3-foliated subsystem U(1) symmetry:
1/ i 4 z -
1 AN Qy(2) = Z My
e —fe— o5
: 4 sz(y) = Z nx,}r,z!
,4/7 AR, NT
|7
< . Q Z(X) = E nx,y,z
24

He, You and Prem 2020

Pirsa: 23050025 Page 55/67



U(1) subsystem LSM in 3D

The (global) U(1) LSM implies that a gapped symmetric state must be LRE

Pirsa: 23050025

e y) = Uy (6) |y)

(Ugy(2m)) = e Al
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U(1) subsystem LSM in 3D

The (global) U(1) LSM implies that a gapped symmetric state must be LRE

e'%n|y) = Uy (6) |y)

(UaM(ZF)) - eZniuNM

O = ), Oz M)

U;y(27) has no support
on the top and bottom surfaces!
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U(1) subsystem LSM in 3D

U;y(27) is only supported on the “cage”

(Und(27)) = €2

--------------
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U(1) subsystem LSM in 3D

U;y(27) is only supported on the “cage”

(Uppf(2m)) = €2

Suggest: a particle with an unusual braiding with a background particle?
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Lineon-fracton braiding in X-cube

X X

X
; % Z Z
J\. ! L Z Z
X . X Z Z /| Z Z
X X “ < /‘
" Z Z

Vijay, Haah and Fu, PRB 2016
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Lineon-fracton braiding in X-cube

A X
X
; X Z Z
X X Z Z z Z
X z/| Z
X X
X Z Z
Vijay, Haah and Fu, PRB 2016
4 ;
| | ! ;
- T/ V4 5
| 1
| $ I
¥ e
! M A Gl

Figure from Shirley et al PRX 2018
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X-cube model at half filling

The fracton has charge 1/2 under U(1)
There is a background fracton per cube

A physical model can be constructed using partons

Pretko et al 2020
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X-cube model at half filling

The fracton has charge 1/2 under U(1)

® There is a background fracton per cube

S A physical model can be constructed using partons

7 Pretko et al 2020

Reduce the theory further: condense certain lineon dipoles

e.g Z%* toric code in 3D (Lake and Hermele 2021)
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Mobility constraint

Wilson line of Téz(a)

N

o
&y
~

g Wilson line of a
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Mobility constraint

Wilson line of kaz(a)

e
LY
]
]
(]
]
]
(]
'
(]
]
]
(]
]
2

e Wilson line of a

T;i’»(a) # aif [, # 0 mod g, otherwise the phase factor is trivial
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Mobility constraint

Wilson line of Tzlz(a)

&
~
&9 e

e Wilson line of a

Ygi’»(a) # aif [, # 0 mod g, otherwise the phase factor is trivial

Translation by lz # 0 mod g must change the “superselection sector”
No local operator can hop a by [ if [, # 0 mod g
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Summary

e |attice effects can enter low-energy theory via emanant symmetries, their defect and anomaly
¢ Anomalies in emanant symmetry have consequence in UV (e.g. subtle system size dependence)

® Lieb-Schultz-Mattis anomaly for subsystem U(1) leads to mobility constraints similar to fracton systems.

Pirsa: 23050025 Page 67/67



