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Abstract: We study the low-energy effective action for relativistic superfluids obtained by integrating out the heavy fields of a UV theory. A careful
renormalization procedure is required if oneisinterested in deriving the EFT to all ordersin thelight fields (at afixed order of derivatives per field).
The result suggests a genera relation between finite density and spontaneous symmetry breaking for QFTs of interacting scalars with an internal
global symmetry. The ground state at finite chemical potential of these systems is usually associated with a superfluid phase, in which the global
symmetry is spontaneously broken along with Lorentz boosts and time trandations. We show that this expectation is always realized at one loop for
complex scalar fields with arbitrary UV potential in d &gt; 2 spacetime dimensions. The physically distinct phenomena of finite charge density and
spontaneous symmetry breaking occur simultaneously. We quantify this result by deriving universal scaling relations for the symmetry breaking
scale as a function of the charge density, at low and high density. Moreover, we show that the critical value of ? coincides with the pole mass. The
same conclusions hold non-perturbatively for an O(N) theory with quartic interactionsin d = 3, at leading order in the 1/N expansion. In order to do
this we compute analytically the one-loop effective potential at finite ? and zero temperature. As an application we derive in closed form the
one-loop EFT for superfluid phonons for arbitrary UV scalar potentialsin d &gt; 2. From this we obtain analytically the one-loop scaling dimension
of the lightest charge n operator in the $\phi~6$ conformal superfluid in d=3, at leading order in 1/n, reproducing a numerical result of Badel et al.
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Introduction

® The superfluid phase is characterized by the spontaneous breaking of

time translation and an internal U(1) symmetry to the diagonal combination:

(H - p0)IQ,) =0

e The system in the state |Q) has a finite density for the U(1) charge:

- it defines a preferred reference system: rest frame

- asaconsequence boost invariance is spontaneously broken

see e.g. Nicolis, Piazza- JHEP 06 (2012) 025

® So called “inverse Higgs constraints” ensure that a single Goldstone field

can realise non-linearly the full set of broken symmetries

lvanov, Ogievetsky ‘75 + Low, Manohar 2001 +[...] Nicolis, Penco, Piazza, Rosen 2013

Pirsa: 23050021 Page 3/31



Introduction

e Superfluids are interesting physical systems for many reasons

- they describe a fascinating phase of condensed matter systems

- Relativistic Superfluids can describe:

1. cosmological fluids (*ghost condensate/inflation”) or exotic DM phases.

2. finite density phases of QCD (in the core of neutron stars and pulsars).

- they are related to the large charge sector of CFTs (state/operator correspondence)

Hellerman et al. 15 + Monin et al. 27 +[...]

¢ We will consider relativistic superfluids at zero temperature in 3+1 D

- the non-relativistic limit can be taken safely at the end by reintroducing units of ¢

and taking the limit ¢ — o
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The Superfluid EFT

® The most general low energy effective action is

chemical potential
Fa
- O(t,x) = ut + n(t,x), where@ isaPoincaré scalar:
it realizes non-linearly U(1) and time translations as 7 — & + const

- 7« isthe superfluid phonon field

® The superfluid phonon EFT is obtained expanding around X =~ u?

_ The phonon EFT expansion is controlled by —— ,—, but u can be large
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The Superfluid EFT

e Compare with the Lorentz invariant theory for a U(1) Goldstone

1 c
L =—(0n)+—0n)* + ...
2 f
- Taylor expansionin Y = ()% around Y ~ 0
- atlow energy and with a finite experimental accuracy only a finite number of

terms are needed
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Matching in EFT

e Path integral approach: integrate out heavy fields
h(x) : heavy £(x) : light

- correlation functions of light fields computed with S & match those computed with §

DEDheSMele(x). . .£(x,) DeeSlle(x). . . £(x,)
1 n — 1 n
_[DthefS[hf] IDt’efSeff[f]

(f(x))...0(x,)) =

» In general we don’t know how to perform JDh for arbitrary configurations
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Matching in EFT

® The low energy expansion changes the structure of UV divergencies

- heavy propagator:

i : 1+q2+q4+
F-Mitie M M2 Mt

¢ How to “integrate out” beyond tree level?

- usually one performs a matching computation

for as many correlates as needed to fix the free parameters at the desired order in

the derivative expansion
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All orders matching

e But we would like to compute P(X) to all orders in X

- possible strategy (first proposed by Georgi): choose S, such that

Ugprl?] = Dl £

( JD&feiScﬁ[f+5f]) = ( [DhD5feiS[h,£+6f])
1PI 1PI for 67

e We will carry out this computation at one-loop for a relativistic field theory

derive the P(X) effective lagrangian from an explicit UV completion
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An ultraviolet model

® Simplest weakly coupled UV completion of a superfluid:
- complex scalar field with U(1) symmetry

1 .
P = |0®|? — m?|®|? — A|®|*, ® = —p(x)e’™

2

o(t, x) = ut + n(t, x)

- if m? > 0 : spontaneous symmetry breaking and finite density for 4 > m

- if m? < 0 : SSB always and finite density for u > 0

6 : light degree of freedom (Goldstone boson)

p : heavy degree of freedom (radial mode)
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Matching at one-loop

® In polar coordinates the action takes the form

1 1 1 1
S[p, 0] = | d*x | =(0p)* + =p2(80)* — =m?p? — —1p*
[p, 6] J x(z(p) 2*0( ) N

- the action depends on @ only through X = (96)*
- integrating out p we obtain an expansionin X, dX, ...

- working at zeroth order in derivatives is analogous to a Coleman-Weinberg computation

¢ Indim-reqg the path integral measure turns out to be invariant

D® D®* = Dp Df exp (5(4 )Jd“xlog(p)) = Dp D0
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Matching at one-loop

® One-@ irreducible effective action in the full theory

0(x) = 0(x) + n(x)

et lrlf] — (JDpDJI e"Slp,9+f:J>

1PI for =

o Attreelevel: — TTI[0] = S[py(x),0], X = (0)°

- po(x) : solution to the classical equations of motion

- (O+m*=X)py+4ip; =0

m
zeroth order in derivatives of X : 7 (for X > mz)

Babichev et al. '18

Creminelli et al. ‘29
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Matching at one-loop

® Atone-loop level: perturb about the saddle point and keep only quadratic terms

p = po+ h(x) O(x) = O(x) + z(x)
4 (1 2 1y 5) 1 50
Slh,x] = |d'x E(ah) + Epo (om)” + 2V# haﬂﬂ — Emeﬁh ,

- m&F=2X-m?, V,=p,0, 9,0 =const

- normalizing canonically and completing the square for /2 :

| ; 3
JDthz ¢S = IDh’D}t’ exp — |~ (O +miph' - ’f’( Cleh0, 20, e m2ﬁ) d
€
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Matching at one-loop

- computing the determinant we obtain the effective action in the full theory

full (mgff + Zm‘:szX + 2X2)+

- AT loop)g) — {d“x[ _
3272(d — 4)

1 m
o (9 + 18m2X + 10X2 — 6mdy + 2m X + 2X?) log “2+

—10X—23 f(=4ximZ) )|

Mg

7
where: f(2) = 3F, (1,1,5;4,5;z)

- the ordinary MS countqerterms 6m?, 81, 5A_, cancel all divergencies as expected.
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Matching at one-loop

® We need to match this with the quantum effective action of the effective theory

i Terrl] — (J Dr efscﬁ[em) — o Sel0) [ D eiSiln)
1PI

where  S,[7] = [d4x52”’”aﬂzrayzr is the quadratic action for z

and ZM = 2P (X" + 4P"(X)0"00"0

- ZWis constant for constant d,0 and the determinant vanishes in dim-reg so that

at first order in derivatives of € and at one-loop in dimensional reqularization
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The one-loop effective action

® We arrive at the result

X3
| — 8X2 + Oy + 22, X 4+ 2X%)(9 = 6 log(mZ /i) — 10— f

1

- P(X)for X = u? is associated with the equation of state of the superfluid:

should be renormalization scale independent
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O(N) model

¢ Adifferent (more general) UV completion is the theory of

- Nrealscalars ¥, (x),a = 1,..., N with O(N) symmetry

1 — 1 — 1 —

L =—|0¥|? — —m?|¥|? — 2| P|*
2 2 4

- Introducing a chemical potential for one of the SO(NV') charges we get a superfluid state

- massless Goldstone + radial mode + (N — 2) gapped Goldstones with fixed gap y

Nicolis, Piazza ‘13

® Working in cylindrical coordinates after a similar computation we get

o X\
PX = PX + N-2)X?(9—-6log— |:
( )O(N) ( )U(]) ;384::2( ) ( o ﬂ2)§
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Some physical consequences

In the high density limit, X > mlf

oles We can use the RG to resume the logs

P(X) ~

o Th 1672

X _dxa (20+2(N—2) 22
422X)° dg

the sound speed is given by

P(X) 1

PX)+2XP'(X) 3

same result can be derived from the trace anomaly of the stress-energy tensor:

T, =2P'(X)3,00,0—1,PX), sothat ¢=2P(X)X-PX), p=PX)

on the other hand, for our P(X): T”'ﬂ = — f1A(2X)P(X). Differentiating wrt X it follows.
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Some physical consequences

e For positive m?, at the classical level, SSB occurs for u > m.

What happens at 1-loop?

- stability and subluminality of the configuration with X = u? implies

1672

A
PX)>0, P'X)>0, = X>m? (1 ———N+ 2)) = mgole

o Low density limit X — m?

. the density is of order (X — m]fole)

Pirsa: 23050021 Page 19/31



Finite density vs Spontaneous Symmetry Breaking

Consider a complex scalar @ with U(1) internal symmetry.

>
Consider the ground state of finite density for the scalar current J, = o) d,P:

(@73 ,®) £ 0.

Is it possible to have (®) =0 ?

For free bosons: the ground state at finite density always exhibits SSB (BEC)

We are not aware of any proof that this has to be the case

in the presence of interactions
-in fact in 2+1 D Bose/Fermi duality gives counterexamples
- in 2+1 D bosonic systems can have fermionic behavior if coupled to Chern-Simons terms

Minwalla et al. 20 19
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Scalar fields at finite u

® We consider a complex scalarin d > 2 space-time dimensions
& = |0®|* — V(¢), where ¢ = |D|
V($) = m*$* + Vin(9)
e We want now to compute one-loop effective action at finite u
%ﬂy =X — ,uJO =¥ project on ground state with ie term —is%’ﬂ

- Going back to the lagrangian formalism we get

1 1 . .
L= 50w + 50,00 + 1 (610 = 62p1) ~ Vgin)

V(g: ) = (m* — u>)p* + Vip (@)

: er. . = = .
ie€, == 5 [(ﬂiq—"i"‘ V,- V(pi] + ie V(¢h; 1)
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Scalar fields at finite 4 - Functional approach

e Inthis field basis the ie%’ﬂ term projects on time-independent configurations

e Itis enough to compute the one-loop effective potential at finite y

- the radial mode is included (not integrated out): no assumption of SSB

- we can check if at one-loop finite density is always tied to SSB:

Zljsul = JDQa exp [ilddx (.Sfﬂ +ji (X))@ (x) + h.c. + ie %ﬂ)]

DRT763 7] dVeg(@.s 1)
d(ﬂd

@Pmin

dVeff((pmin; l“)

d
—i—log Z[O; 4] = —
du
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Rephrasing the finite density - SSB connection

® The question that we are trying to address can be rephrased as follows:
- assume that at u = 0 there is no SSB: Prin(0) = 0, 00)=0

- isittruethatwhen u > p i O #0 = ¢.;,(u) #0 ?

AVl (@pmins #) . B dV, (0 p) 0
du du

O(p) = -
e |fyes:

- what is the critical value of u : Herit = Mpole

- can we quantify the "amount of SSB” as a function of charge Q ?
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The quantum effective potential at finite

For arbitrary interaction potential, the one loop effective potential at finite y is given by:

dp

log [(p> + M?Y — 4(p - £* — &7,

2 2 — 1 7 74
M*=M“(¢;p) =—\V(gh:p) +dV(g; ) ),
4¢

2 2 = 1 g 7 2
& =W = 1o (Ve -9 ven)

We compute analytically the loop integral for arbitrary interaction potential.

We regularize using dim.reg. : the counterterms needed are exactly the same as those at # = 0.
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The full expressionind =3,d =4

® Ind = 3 we obtain

1 gz ! 1 3
v = ——M2+ 23’2——[ dx \/y ,F —,—,2‘42x1—x 2],
(P31 B M+ - T X VY o1 | 7 2487 (L - 1)y

1
T M2+ (1 - 2x)22

4

® Ind = 4 we obtain

1 1
— [4g% + 3(M2 + u?)?] + o (82 + (M2 + p2)?] log (M? + u?)
d=4

2 2 1
M 3
+-2 2 arctan (%) = J dxy 5F, [1, Lo 2,3|y],

VRgw| =

1672 p 2562 ),

B 4g2% x(1 — x)
YT M+ (- 2y

cfr. Kapusta ‘81, Benson et al. ‘91, Brauner ‘06 24
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Finite density and SSB at one loop

d
—— (1) = U, =
i Vi (p=0;u)=0 —
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O(N) model ind = 3 at finite u

¢ Consider an O(N) vector multiplet of scalars T with quartic coupling:

- introduce chemical potential in the plane 1-2, with notation X, = (s, 55, ;)

1 1 o 1 Ay
<, = E(aysl)Z + E(aysz)z + 4 ($15, = 8,8) — E(mz = P +5)— W(Slz + 57)*

1 1 As
+5(aysi)2 = [m? + A(s? + s3)| §7 - HS?’

- atleading orderin 1/N , and to all orders in 4,

1 1 N
Verls, S,26.1) = 2 (x = P+ 53) + 52(83 -—
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Quantifying SSB : scaling relations

® Having found a relation between finite density and SSB we would like to quantify it.

- physical definition of symmetry breaking scale?

- from the shift-symmetry current of the EFT we also have:

- using these relations, the sound speed and that p; = m,;.  we obtain:

4m?

1)
poleP (mpole
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Superfluid phonons at one loop for arbitrary UV potential

® We can obtain the P(X) for the phonons from the value of the effective potential:

172
)| —— = Ve (Ppins )

m=const

PX) = Loy [((Dy:r)(D'”zr)

V(o)

S . ®

P(X) = —V@o;ﬂ =
d=4

1 s 2 2 .
+192E2( 4X% + (X% + 2gmn X + 282, ) (9 — 610g(2gmin)

5x3 p 2X
1’ 1’ E& 43 5
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Conformal superfluid and large charge operators

e Consideringthe 1¢® modelin d =3 A=i%36

- the model is conformal at one loop. Finite y : conformal superfluid

2 7v/2 + 3 arcsinh(1) -
P(X) = + X372,
d=3, 1¢ 33124/ 127

¢ The scaling dimension of the lowest dimensional charge n operator, for large 7 :

A 372
An \/gﬂ' Hellerman et al. '15
Agn = et O\ — ;
\/gir An Monin et al. 17,

- ¢3)p can be related to the coefficient of the P(X):

2 + 3 arcsinh(1 3
arcsinh(1) _ {,\” —0.0653313...

Matches (to all digits) the numerical result of: Badel et al. 20
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Summary

® We computed the low energy effective theory P(X) at one-loop

for relativistic superfluids from a UV theory with arbitrary potential

- two different and independent computations, they agree non-trivially

- reproduces large charge scaling dimensionsin  A¢°, d =3

This gives the equation of state for a zero-temperature superfluid

- it can be fully expressed in terms of on-shell quantities, RG independent

We computed the full one-loop effective potential at finite u

We checked explicitly that finite density = SSB at one-loop

- What about higher orders? Is it possible to give a non-perturbative proof?

We quantified the amount of SSB by finding (universal) scaling relations
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